Minhas AMK, Marcus R, Virani SS, Shapiro MD, Mentz RJ, Echeverria LE, et al. Worldwide prevalence of Chagas cardiomyopathy—an analysis from the global burden of disease dataset. Infection. 2025;53:947–52.
Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375:1388–402.
Rassi A Jr, Marin JAN, Rassi A. Chronic Chagas cardiomyopathy: a review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz. 2017;112:224–35.
Frade AF, Guerin H, Nunes JPS, Silva L, Roda VMP, Madeira RP, et al. Cardiac and digestive forms of Chagas disease: an update on pathogenesis, genetics, and therapeutic targets. Mediat Inflamm. 2025;2025:8862004.
Pecoul B, Batista C, Stobbaerts E, Ribeiro I, Vilasanjuan R, Gascon J, et al. The BENEFIT trial: where do we go from here? PLoS Negl Trop Dis. 2016;10:e0004343.
Viotti R, Vigliano C, Lococo B, Alvarez MG, Petti M, Bertocchi G, et al. Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Exp Rev Anti-Infect Ther. 2009;7:157–63.
Pinazo MJ, Muñoz J, Posada E, López-Chejade P, Gallego M, Ayala E, et al. Tolerance of benznidazole in treatment of Chagas’ disease in adults. Antimicrob Agents Chemother. 2010;54:4896–9.
Antinori S, Grande R, Bianco R, Traversi L, Cogliati C, Torzillo D, et al. High frequency of adverse reactions and discontinuation with benznidazole treatment for chronic Chagas disease in Milano, Italy. Clin Infect Dis. 2015;60:1873–5.
Forsyth CJ, Hernandez S, Olmedo W, Abuhamidah A, Traina MI, Sanchez DR, et al. Safety profile of nifurtimox for treatment of Chagas disease in the United States. Clin Infect Dis. 2016;63:1056–62.
Dumonteil E, Bottazzi ME, Zhan B, Heffernan MJ, Jones K, Valenzuela JG, et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Exp Rev Vaccines. 2012;11:1043–55.
Krautz GM, Galvao LM, Cancado JR, Guevara Espinoza A, Ouaissi A, Krettli AU. Use of a 24-kilodalton Trypanosoma cruzi recombinant protein to monitor cure of human Chagas’ disease. J Clin Microbiol. 1995;33:2086–90.
Ouaissi A, Aguirre T, Plumas Marty B, Piras M, Schoneck R, Gras Masse H, et al. Cloning and sequencing of a 24-kDa Trypanosoma cruzi-specific antigen released in association with membrane vesicles and defined by a monoclonal antibody. Biol Cell. 1992;75:11–17.
Wrightsman RA, Dawson BD, Fouts DL, Manning JE. Identification of immunodominant epitopes in Trypanosoma cruzi trypomastigote surface antigen-1 protein that mask protective epitopes. J Immunol. 1994;153:3148–54.
Seid CA, Jones KM, Pollet J, Keegan B, Hudspeth E, Hammond M, et al. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human Chagas disease. Hum Vaccines Immunother. 2017;13:621–33.
Biter AB, Weltje S, Hudspeth EM, Seid CA, McAtee CP, Chen WH, et al. Characterization and stability of Trypanosoma cruzi 24-C4 (Tc24-C4), a candidate antigen for a therapeutic vaccine against Chagas disease. J Pharm Sci. 2018;107:1468–73.
Dzul-Huchim VM, Ramírez-Sierra MJ, Martínez-Vega PP, Rosado-Vallado ME, Arana-Argaez VE, Ortega-López J, et al. Vaccine-linked chemotherapy with a low dose of benznidazole plus a bivalent recombinant protein vaccine prevents the development of cardiac fibrosis caused by Trypanosoma cruzi in chronically-infected BALB/c mice. PLoS Negl Trop Dis. 2022;16:e0010258.
Barry MA, Wang Q, Jones KM, Heffernan MJ, Buhaya MH, Beaumier CM, et al. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Hum Vaccines Immunother. 2016;12:976–87.
de la Cruz JJ, Villanueva-Lizama L, Dzul-Huchim V, Ramírez-Sierra MJ, Martínez-Vega P, Rosado-Vallado M, et al. Production of recombinant TSA-1 and evaluation of its potential for the immuno-therapeutic control of Trypanosoma cruzi infection in mice. Hum Vaccines Immunother. 2019;15:210–9.
Martínez-Campos V, Martínez-Vega P, Ramírez-Sierra MJ, Rosado-Vallado M, Seid CA, Hudspeth EM, et al. Expression, purification, immunogenicity, and protective efficacy of a recombinant Tc24 antigen as a vaccine against Trypanosoma cruzi infection in mice. Vaccine. 2015;33:4505–12.
Cruz-Chan JV, Villanueva-Lizama LE, Versteeg L, Damania A, Villar MJ, González-López C, et al. Vaccine-linked chemotherapy induces IL-17 production and reduces cardiac pathology during acute Trypanosoma cruzi infection. Sci Rep. 2021;11:3222.
Jones K, Versteeg L, Damania A, Keegan B, Kendricks A, Pollet J, et al. Vaccine-linked chemotherapy improves benznidazole efficacy for acute Chagas disease. Infect Immun. 2018;86:e00876–17.
Dumonteil E, Herrera C, Marx PA. Safety and preservation of cardiac function following therapeutic vaccination against Trypanosoma cruzi in rhesus macaques. J Microbiol Immunol Infect. 2023;56:400–7.
Dumonteil E, Herrera C, Tu W, Goff K, Fahlberg M, Haupt E, et al. Safety and immunogenicity of a recombinant vaccine against Trypanosoma cruzi in Rhesus macaques. Vaccine. 2020;38:4584–91.
Dumonteil E, Tu W, Desale H, Goff K, Marx P, Ortega-Lopez J, et al. Immunoglobulin and T cell receptor repertoire changes induced by a prototype vaccine against Chagas disease in naive rhesus macaques. J Biomed Sci. 2024;31:58.
Calderón-Quintal JA, Teh-Poot CF, Pech Piste LM, Martinez-Vega PP, Dzul-Huchim V, Torres-Acosta F et al. Randomized field trial of a therapeutic vaccine against Trypanosoma cruzi natural infection in dogs and correlates for efficacy. NPJ Vaccines 2025;11:18.
Villanueva-Lizama L, Cruz-Chan JV, Cetina-Aguilar AC, Herrera-Sánchez LF, Rodríguez-Pérez JM, Rosado-Vallado ME, et al. Trypanosoma cruzi vaccine candidate antigens Tc24 and TSA-1 recall memory immune response associated with HLA-A and –B supertypes in Chagasic chronic patients from Mexico. PLoS Negl Trop Dis. 2018;12:e0006240.
Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104:1051–4.
Zingales B, Miles MA, Moraes CB, Luquetti A, Guhl F, Schijman AG, et al. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz. 2014;109:828–33.
Arnal A, Villanueva-Lizama L, Teh-Poot C, Herrera C, Dumonteil E. Extent of polymorphism and selection pressure on the Trypanosoma cruzi vaccine candidate antigen Tc24. Evol Appl. 2020;13:2663–72.
Knight JM, Zingales B, Bottazzi ME, Hotez P, Zhan B. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1. Parasite Immunol. 2014;36:708–12.
Buekens P, Cafferata ML, Alger J, Althabe F, Belizan JM, Bustamante N, et al. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: an observational prospective study. Am J Trop Med Hyg. 2018;98:478–85.
Majeau A, Dumonteil E, Herrera C. Identification of highly conserved Trypanosoma cruzi antigens for the development of a universal serological diagnostic assay. Emerg Micro Infect. 2024;13:2315964.
Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023;32:e4792.
Khan T, Rahman M, Ahmed I, Al Ali F, Jithesh PV, Marr N. Human leukocyte antigen class II gene diversity tunes antibody repertoires to common pathogens. Front Immunol. 2022;13:856497.
Villanueva-Lizama L, Teh-Poot C, Majeau A, Herrera C, Dumonteil E. Molecular genotyping of Trypanosoma cruzi by next-generation sequencing of the mini-exon gene reveals infections with multiple parasite DTUs in Chagasic patients from Yucatan, Mexico. J Infect Dis. 2019;219:1980–8.
Majeau A, Herrera C, Dumonteil E. An improved approach to Trypanosoma cruzi molecular genotyping by next-generation sequencing of the mini-exon gene. Methods Mol Biol. 2019;1955:47–60.
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90.
Chiurillo MA, Cortez DR, Lima FM, Cortez C, Ramirez JL, Martins AG, et al. The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members. Infect Genet Evol. 2016;37:266–74.
Freitas LM, dos Santos SL, Rodrigues-Luiz GF, Mendes TA, Rodrigues TS, Gazzinelli RT, et al. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS ONE. 2011;6:e25914.
Dumonteil E, Herrera C. The case for the development of a Chagas disease vaccine: Why? How? When? Trop Med Infect Dis. 2021;6:16.
Carlier Y, Dumonteil E, Herrera C, Waleckx E, Tibayrenc M, Buekens P et al. Coinfection by multiple Trypanosoma cruzi clones: a new perspective on host-parasite relationship with consequences for pathogenesis and management of Chagas disease. Microbiol Mol Biol Rev 2025;89:e0024224.
Desale H, Tu W, Goff K, Marx PA, Herrera C, Dumonteil E. PBMC transcriptomic signatures reflect Trypanosoma cruzi strain diversity and trained immunity in chronically infected macaques. JCI Insight. 2025;10:e186003.
Dumonteil E, Desale H, Tu W, Hernández-Cuevas N, Shroyer M, Goff K, et al. Intra-host Trypanosoma cruzi strain dynamics shape disease progression: the missing link in Chagas disease pathogenesis. Microbiol Spectr. 2023;11:e0423622.
Jager AV, Muia RP, Campetella O. Stage-specific expression of Trypanosoma cruzi trans-sialidase involves highly conserved 3’ untranslated regions. FEMS Microbiol Lett. 2008;283:182–8.
Maldonado RA, Mirzoeva S, Godsel LM, Lukas TJ, Goldenberg S, Watterson DM, et al. Identification of calcium-binding sites in the trypanosome flagellar calcium-acyl switch protein. Mol Biochem Parasitol. 1999;101:61–70.
Colli W. Trans-sialidase: a unique enzyme activity discovered in the protozoan Trypanosoma cruzi. FASEB J. 1993;7:1257–64.
Alves MJ, Colli W. Role of the gp85/trans-sialidase superfamily of glycoproteins in the interaction of Trypanosoma cruzi with host structures. Subcell Biochem. 2008;47:58–69.
Teixeira AAR, Carnero LR, Kuramoto A, Tang FHF, Gomes CH, Pereira NB, et al. A refined genome phage display methodology delineates the human antibody response in patients with Chagas disease. iScience. 2021;24:102540.
Wizel B, Nunes M, Tarleton RL. Identification of Trypanosoma cruzi trans-sialidase family members as targets of protective CD8+ TC1 responses. J Immunol. 1997;159:6120–30.
Martin DL, Weatherly DB, Laucella SA, Cabinian MA, Crim MT, Sullivan S, et al. CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog. 2006;2:e77.
Pitcovsky TA, Mucci J, Alvarez P, Leguizamon MS, Burrone O, Alzari PM, et al. Epitope mapping of trans-sialidase from Trypanosoma cruzi reveals the presence of several cross-reactive determinants. Infect Immun. 2001;69:1869–75.
Pitcovsky TA, Buscaglia CA, Mucci J, Campetella O. A functional network of intramolecular cross-reacting epitopes delays the elicitation of neutralizing antibodies to Trypanosoma cruzi trans-sialidase. J Infect Dis. 2002;186:397–404.
Pacini MF, Perdomini A, Bulfoni Balbi C, Dinatale B, Herrera FE, Perez AR, et al. The high identity of the Trypanosoma cruzi Group-I of trans-sialidases points them as promising vaccine immunogens. Proteins. 2023;91:1444–60.
Mejia R, Verocai GG, Mosley IA, Zhan B, Vongthavaravat L, Busselman RE, et al. Evaluation of a novel Tc-24 recombinant antigen ELISA for serologic testing for Trypanosoma cruzi in dogs. Vet Med Sci. 2025;11:e70570.
Calderón-Quintal JA, Escalante-Talavera MJ, Teh-Poot C, Carrera-Campellone MN, Martínez-Vega PP, Dzul-Huchim V, et al. Natural infection of Trypanosoma cruzi in client-owned dogs from rural Yucatan, Mexico. Sci Rep. 2025;15:10263.
Majeau A, Murphy L, Herrera C, Dumonteil E. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: implications for disease epidemiology and diagnostics. Pathogens. 2021;10:212.


















Leave a Reply