Gartner, V. et al. Genomic insights into Plasmodium vivax population structure and diversity in central Africa. Malar. J. 23, 27. https://doi.org/10.1186/s12936-024-04852-y (2024).
Menegon, M. et al. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia. Infect. Genet. Evol. 27, 244–249. https://doi.org/10.1016/j.meegid.2014.07.029 (2014).
Price, R. N., Douglas, N. M. & Anstey, N. M. New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr. Opin. Infect. Dis. 22, 430–435. https://doi.org/10.1097/QCO.0b013e32832f14c1 (2009).
Anstey, N. M., Russell, B., Yeo, T. W. & Price, R. N. The pathophysiology of Vivax malaria. Trends Parasitol. 25, 220–227. https://doi.org/10.1016/j.pt.2009.02.003 (2009).
Carvalho, T. A. et al. Plasmodium vivax infection in Anajas, state of para: no differential resistance profile among Duffy-negative and Duffy-positive individuals. Malar. J. 11, 430. https://doi.org/10.1186/1475-2875-11-430 (2012).
Howes, R. E. et al. The global distribution of the Duffy blood group. Nat. Commun. 2, 266. https://doi.org/10.1038/ncomms1265 (2011).
Mendes, C. et al. Duffy negative antigen is no longer a barrier to Plasmodium vivax-molecular evidences from the African West Coast (Angola and Equatorial Guinea). PLoS Negl. Trop. Dis. 5, e1192. https://doi.org/10.1371/journal.pntd.0001192 (2011).
Barnwell, J. W., Nichols, M. E. & Rubinstein, P. In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J. Exp. Med. 169, 1795–1802. https://doi.org/10.1084/jem.169.5.1795 (1989).
Chitnis, C. E. & Miller, L. H. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med. 180, 497–506. https://doi.org/10.1084/jem.180.2.497 (1994).
Ovchynnikova, E. et al. DARC extracellular domain remodeling in maturating reticulocytes explains Plasmodium vivax tropism. Blood 130, 1441–1444. https://doi.org/10.1182/blood-2017-03-774364 (2017).
Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl. J. Med. 295, 302–304. https://doi.org/10.1056/nejm197608052950602 (1976).
Tournamille, C., Colin, Y., Cartron, J. P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat. Genet. 10, 224–228. https://doi.org/10.1038/ng0695-224 (1995).
Menard, D. et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc. Natl. Acad. Sci. USA 107, 5967–5971. https://doi.org/10.1073/pnas.0912496107 (2010).
Golassa, L., Amenga-Etego, L., Lo, E. & Amambua-Ngwa, A. The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health. Malar. J. 19, 299. https://doi.org/10.1186/s12936-020-03372-9 (2020).
Popovici, J., Roesch, C. & Rougeron, V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog. 16, e1008258. https://doi.org/10.1371/journal.ppat.1008258 (2020).
Verzier, L. H., Coyle, R., Singh, S., Sanderson, T. & Rayner, J. C. Plasmodium knowlesi as a model system for characterising Plasmodium vivax drug resistance candidate genes. PLoS Negl. Trop. Dis. 13, e0007470. https://doi.org/10.1371/journal.pntd.0007470 (2019).
Ranjan, A. & Chitnis, C. E. Mapping regions containing binding residues within functional domains of Plasmodium vivax and Plasmodium knowlesi erythrocyte-binding proteins. Proc. Natl. Acad. Sci. USA 96, 14067–14072. https://doi.org/10.1073/pnas.96.24.14067 (1999).
Mason, S. J., Miller, L. H., Shiroishi, T., Dvorak, J. A. & McGinniss, M. H. The Duffy blood group determinants: their role in the susceptibility of human and animal erythrocytes to Plasmodium knowlesi malaria. Br. J. Haematol. 36, 327–335. https://doi.org/10.1111/j.1365-2141.1977.tb00656.x (1977).
Bouyssou, I. et al. Unveiling P. vivax invasion pathways in Duffy-negative individuals. Cell Host Microbe 31, 2080–2092 e2085 (2023). https://doi.org/10.1016/j.chom.2023.11.007
De Meulenaere, K. et al. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front. Cell. Infect. Microbiol. 12, 1011692. https://doi.org/10.3389/fcimb.2022.1011692 (2022).
Gruszczyk, J. et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science 359, 48–55. https://doi.org/10.1126/science.aan1078 (2018).
Kanjee, U. et al. Plasmodium vivax strains use alternative pathways for invasion. J. Infect. Dis. 223, 1817–1821. https://doi.org/10.1093/infdis/jiaa592 (2021).
Malleret, B. et al. Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat. Microbiol. 6, 991–999. https://doi.org/10.1038/s41564-021-00939-3 (2021).
Lee, S. K. et al. Complement receptor 1 is the human erythrocyte receptor for Plasmodium vivax erythrocyte binding protein. Proc. Natl. Acad. Sci. USA 121, e2316304121. https://doi.org/10.1073/pnas.2316304121 (2024).
Drew, D. R. et al. Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines. Cell. Mol. Life Sci. 80, 74. https://doi.org/10.1007/s00018-023-04712-z (2023).
Yap, A. et al. Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell. Microbiol. 16, 642–656. https://doi.org/10.1111/cmi.12287 (2014).
Ford, A. et al. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Negl. Trop. Dis. 14, e0008234. https://doi.org/10.1371/journal.pntd.0008234 (2020).
Ngwana-Joseph, G. C. et al. Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance. Nat. Commun. 15, 10771. https://doi.org/10.1038/s41467-024-54964-x (2024).
Jennison, C. et al. Plasmodium vivax populations are more genetically diverse and less structured than sympatric Plasmodium falciparum populations. PLoS Negl. Trop. Dis. 9, e0003634. https://doi.org/10.1371/journal.pntd.0003634 (2015).
Neafsey, D. E. et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat. Genet. 44, 1046–1050. https://doi.org/10.1038/ng.2373 (2012).
Benavente, E. D. et al. Distinctive genetic structure and selection patterns in Plasmodium vivax from South Asia and East Africa. Nat. Commun. 12, 3160. https://doi.org/10.1038/s41467-021-23422-3 (2021).
Kepple, D. et al. Plasmodium vivax from Duffy-Negative and Duffy-Positive individuals share similar gene pools in East Africa. J. Infect. Dis. 224, 1422–1431. https://doi.org/10.1093/infdis/jiab063 (2021).
Lo, E. et al. Contrasting epidemiology and genetic variation of Plasmodium vivax infecting Duffy-negative individuals across Africa. Int. J. Infect. Dis. 108, 63–71. https://doi.org/10.1016/j.ijid.2021.05.009 (2021).
Ryan, J. R. et al. Evidence for transmission of Plasmodium vivax among a Duffy antigen negative population in Western Kenya. Am. J. Trop. Med. Hyg. 75, 575–581 (2006).
Howes, R. E. et al. Global epidemiology of Plasmodium vivax. Am. J. Trop. Med. Hyg. 95, 15–34. https://doi.org/10.4269/ajtmh.16-0141 (2016).
Schumacher, R. F. & Spinelli, E. Malaria in children. Mediterr. J. Hematol. Infect. Dis. 4, e2012073. https://doi.org/10.4084/MJHID.2012.073 (2012).
Koepfli, C. et al. Blood-Stage parasitaemia and age determine Plasmodium falciparum and P. vivax gametocytaemia in Papua new Guinea. PLoS One. 10, e0126747. https://doi.org/10.1371/journal.pone.0126747 (2015).
Lin, E. et al. Differential patterns of infection and disease with P. falciparum and P. vivax in young Papua new Guinean children. PLoS One. 5, e9047. https://doi.org/10.1371/journal.pone.0009047 (2010).
Tjitra, E. et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 5, e128. https://doi.org/10.1371/journal.pmed.0050128 (2008).
Albsheer, M. M. A. et al. Distribution of Duffy phenotypes among Plasmodium vivax infections in Sudan. Genes (Basel) 10. https://doi.org/10.3390/genes10060437 (2019).
Ibrahim, A. et al. Selective whole genome amplification of plasmodium malariae DNA from clinical samples reveals insights into population structure. Sci. Rep. 10, 10832. https://doi.org/10.1038/s41598-020-67568-4 (2020).
Sachdeva, S., Ahmad, G., Malhotra, P., Mukherjee, P. & Chauhan, V. S. Comparison of immunogenicities of recombinant Plasmodium vivax merozoite surface protein 1 19- and 42-kiloDalton fragments expressed in Escherichia coli. Infect. Immun. 72, 5775–5782. https://doi.org/10.1128/IAI.72.10.5775-5782.2004 (2004).
Fernandez-Becerra, C. et al. Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua new Guinea using a multiplex assay. Malar. J. 9, 29. https://doi.org/10.1186/1475-2875-9-29 (2010).
Auburn, S. et al. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of Pir genes. Wellcome Open Res. 1, 4. https://doi.org/10.12688/wellcomeopenres.9876.1 (2016).
Carlton, J. M. et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757–763. https://doi.org/10.1038/nature07327 (2008).
Gupta, E. D. et al. Naturally acquired human antibodies against reticulocyte-binding domains of Plasmodium vivax proteins, PvRBP2c and PvRBP1a, exhibit binding-inhibitory activity. J. Infect. Dis. 215, 1558–1568. https://doi.org/10.1093/infdis/jix170 (2017).
Goo, Y. K. Vivax malaria and the potential role of the subtelomeric multigene vir superfamily. Microorganisms 10 https://doi.org/10.3390/microorganisms10061083 (2022).
VanBuren, R. et al. Extremely low nucleotide diversity in the X-linked region of Papaya caused by a strong selective sweep. Genome Biol. 17, 230. https://doi.org/10.1186/s13059-016-1095-9 (2016).
Arnott, A. et al. Global population structure of the genes encoding the malaria vaccine candidate, Plasmodium vivax apical membrane antigen 1 (PvAMA1). PLoS Negl. Trop. Dis. 7, e2506. https://doi.org/10.1371/journal.pntd.0002506 (2013).
Mwesigwa, A. et al. Genetic diversity and population structure of Plasmodium falciparum across areas of varied malaria transmission intensities in Uganda. Malar. J. 24, 97. https://doi.org/10.1186/s12936-025-05325-6 (2025).
Balloux, F. & Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11, 155–165. https://doi.org/10.1046/j.0962-1083.2001.01436.x (2002).
Goodswen, S. J., Kennedy, P. J., Ellis, J. T. A. & Gene-based positive selection detection approach to identify vaccine candidates using toxoplasma gondii as a test case protozoan pathogen. Front. Genet. 9. https://doi.org/10.3389/fgene.2018.00332 (2018).
Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304. https://doi.org/10.1371/journal.pgen.1000304 (2008).
Early, A. M. et al. Host-mediated selection impacts the diversity of Plasmodium falciparum antigens within infections. Nat. Commun. 9, 1381. https://doi.org/10.1038/s41467-018-03807-7 (2018).
Wright, G. J. & Rayner, J. C. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog. 10, e1003943. https://doi.org/10.1371/journal.ppat.1003943 (2014).
Hester, J. et al. De Novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes. PLoS Negl. Trop. Dis. 7, e2569. https://doi.org/10.1371/journal.pntd.0002569 (2013).
Ntumngia, F. B. et al. A Novel Erythrocyte Binding Protein of Plasmodium vivax Suggests an Alternate Invasion Pathway into Duffy-Positive Reticulocytes. mBio 7 (2016). https://doi.org/10.1128/mBio.01261-16
Dieng, C. C. et al. Epidemiological Insights and Duffy Binding Protein Evolution of Plasmodium vivax in Duffy-Negative Cameroonians. medRxiv (2025). https://doi.org/10.1101/2025.05.29.25328521
Tapaopong, P. et al. Genetic diversity and molecular evolution of Plasmodium vivax Duffy binding protein and merozoite surface protein-1 in Northwestern Thailand. Infect. Genet. Evol. 113, 105467. https://doi.org/10.1016/j.meegid.2023.105467 (2023).
Carugo, O. & Pongor, S. A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Sci. 10, 1470–1473. https://doi.org/10.1110/ps.690101 (2001).
Chothia, C. & Lesk, A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826. https://doi.org/10.1002/j.1460-2075.1986.tb04288.x (1986).
Ferreira, M. U., da Silva Nunes, M. & Wunderlich, G. Antigenic diversity and immune evasion by malaria parasites. Clin. Diagn. Lab. Immunol. 11, 987–995. https://doi.org/10.1128/cdli.11.6.987-995.2004 (2004).
Consortium, T. U. UniProt: the universal protein knowledgebase in 2025. Nucleic Acids Res. 53, D609–D617. https://doi.org/10.1093/nar/gkae1010 (2024).
Zeeshan, M., Bora, H. & Sharma, Y. D. Presence of memory T cells and naturally acquired antibodies in Plasmodium vivax malaria-exposed individuals against a group of tryptophan-rich antigens with conserved sequences. J. Infect. Dis. 207, 175–185. https://doi.org/10.1093/infdis/jis650 (2013).
World Health Organization. Malaria microscopy quality assurance manual-version 2. (2016).
Makler, M. T., Palmer, C. J. & Ager, A. L. A review of practical techniques for the diagnosis of malaria. Ann. Trop. Med. Parasitol. 92, 419–433. https://doi.org/10.1080/00034989859401 (1998).
Hamid, M. M. A. et al. Diagnostic accuracy of an automated microscope solution (miLab) in detecting malaria parasites in symptomatic patients at point-of-care in sudan: a case-control study. Malar. J. 23, 200. https://doi.org/10.1186/s12936-024-05029-3 (2024).
Lo, E. et al. Frequent expansion of Plasmodium vivax Duffy binding protein in Ethiopia and its epidemiological significance. PLoS Negl. Trop. Dis. 13, e0007222. https://doi.org/10.1371/journal.pntd.0007222 (2019).
Snounou, G. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol. Biol. 50, 263–291. https://doi.org/10.1385/0-89603-323-6:263 (1996).
Lo, E. et al. Molecular epidemiology of Plasmodium vivax and Plasmodium falciparum malaria among Duffy-positive and Duffy-negative populations in Ethiopia. Malar. J. 14, 84. https://doi.org/10.1186/s12936-015-0596-4 (2015).
Murphy, S. C. et al. Real-time quantitative reverse transcription PCR for monitoring of blood-stage Plasmodium falciparum infections in malaria human challenge trials. Am. J. Trop. Med. Hyg. 86, 383–394. https://doi.org/10.4269/ajtmh.2012.10-0658 (2012).
Ahmed, S. et al. Prevalence and distribution of Plasmodium vivax Duffy binding protein gene duplications in Sudan. PLoS One 18, e0287668. https://doi.org/10.1371/journal.pone.0287668 (2023).
Chittoria, A., Mohanty, S., Jaiswal, Y. K. & Das, A. Natural selection mediated association of the Duffy (FY) gene polymorphisms with Plasmodium vivax malaria in India. PLoS One 7, e45219. https://doi.org/10.1371/journal.pone.0045219 (2012).
Pogo, A. O. & Chaudhuri, A. The Duffy protein: a malarial and chemokine receptor. Semin Hematol. 37, 122–129. https://doi.org/10.1016/s0037-1963(00)90037-4 (2000).
Auburn, S. et al. An effective method to purify Plasmodium falciparum DNA directly from clinical blood samples for whole genome high-throughput sequencing. PLoS One 6, e22213. https://doi.org/10.1371/journal.pone.0022213 (2011).
PlasmoDB. An integrative database of the Plasmodium falciparum genome. Tools for accessing and analyzing finished and unfinished sequence data. The plasmodium genome database collaborative. Nucleic Acids Res. 29, 66–69. https://doi.org/10.1093/nar/29.1.66 (2001).
Danecek, P. et al. Twelve years of samtools and BCFtools. Gigascience 10 https://doi.org/10.1093/gigascience/giab008 (2021).
Van der Auwera, G. & O’Connor, B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). (O’Reilly Media, Inc., 2020).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, snpeff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92. https://doi.org/10.4161/fly.19695 (2012).
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).
Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278. https://doi.org/10.1093/bioinformatics/btu531 (2014).
Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).
Kepple, D. et al. Alternative invasion mechanisms and host immune response to Plasmodium vivax malaria: trends and future directions. Microorganisms 9. https://doi.org/10.3390/microorganisms9010015 (2020).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630, 493–500. https://doi.org/10.1038/s41586-024-07487-w (2024).
Meng, E. C. et al. UCSF chimerax: tools for structure Building and analysis. Protein Sci. 32, e4792. https://doi.org/10.1002/pro.4792 (2023).
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).


















Leave a Reply