Highly conserved Plasmodium vivax genomes in Duffy-negative individuals from Sudan

Highly conserved Plasmodium vivax genomes in Duffy-negative individuals from Sudan

  • Gartner, V. et al. Genomic insights into Plasmodium vivax population structure and diversity in central Africa. Malar. J. 23, 27. https://doi.org/10.1186/s12936-024-04852-y (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menegon, M. et al. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia. Infect. Genet. Evol. 27, 244–249. https://doi.org/10.1016/j.meegid.2014.07.029 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Price, R. N., Douglas, N. M. & Anstey, N. M. New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr. Opin. Infect. Dis. 22, 430–435. https://doi.org/10.1097/QCO.0b013e32832f14c1 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Anstey, N. M., Russell, B., Yeo, T. W. & Price, R. N. The pathophysiology of Vivax malaria. Trends Parasitol. 25, 220–227. https://doi.org/10.1016/j.pt.2009.02.003 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carvalho, T. A. et al. Plasmodium vivax infection in Anajas, state of para: no differential resistance profile among Duffy-negative and Duffy-positive individuals. Malar. J. 11, 430. https://doi.org/10.1186/1475-2875-11-430 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howes, R. E. et al. The global distribution of the Duffy blood group. Nat. Commun. 2, 266. https://doi.org/10.1038/ncomms1265 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendes, C. et al. Duffy negative antigen is no longer a barrier to Plasmodium vivax-molecular evidences from the African West Coast (Angola and Equatorial Guinea). PLoS Negl. Trop. Dis. 5, e1192. https://doi.org/10.1371/journal.pntd.0001192 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnwell, J. W., Nichols, M. E. & Rubinstein, P. In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J. Exp. Med. 169, 1795–1802. https://doi.org/10.1084/jem.169.5.1795 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chitnis, C. E. & Miller, L. H. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med. 180, 497–506. https://doi.org/10.1084/jem.180.2.497 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ovchynnikova, E. et al. DARC extracellular domain remodeling in maturating reticulocytes explains Plasmodium vivax tropism. Blood 130, 1441–1444. https://doi.org/10.1182/blood-2017-03-774364 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl. J. Med. 295, 302–304. https://doi.org/10.1056/nejm197608052950602 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tournamille, C., Colin, Y., Cartron, J. P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat. Genet. 10, 224–228. https://doi.org/10.1038/ng0695-224 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menard, D. et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc. Natl. Acad. Sci. USA 107, 5967–5971. https://doi.org/10.1073/pnas.0912496107 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golassa, L., Amenga-Etego, L., Lo, E. & Amambua-Ngwa, A. The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health. Malar. J. 19, 299. https://doi.org/10.1186/s12936-020-03372-9 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popovici, J., Roesch, C. & Rougeron, V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog. 16, e1008258. https://doi.org/10.1371/journal.ppat.1008258 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verzier, L. H., Coyle, R., Singh, S., Sanderson, T. & Rayner, J. C. Plasmodium knowlesi as a model system for characterising Plasmodium vivax drug resistance candidate genes. PLoS Negl. Trop. Dis. 13, e0007470. https://doi.org/10.1371/journal.pntd.0007470 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranjan, A. & Chitnis, C. E. Mapping regions containing binding residues within functional domains of Plasmodium vivax and Plasmodium knowlesi erythrocyte-binding proteins. Proc. Natl. Acad. Sci. USA 96, 14067–14072. https://doi.org/10.1073/pnas.96.24.14067 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mason, S. J., Miller, L. H., Shiroishi, T., Dvorak, J. A. & McGinniss, M. H. The Duffy blood group determinants: their role in the susceptibility of human and animal erythrocytes to Plasmodium knowlesi malaria. Br. J. Haematol. 36, 327–335. https://doi.org/10.1111/j.1365-2141.1977.tb00656.x (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouyssou, I. et al. Unveiling P. vivax invasion pathways in Duffy-negative individuals. Cell Host Microbe 31, 2080–2092 e2085 (2023). https://doi.org/10.1016/j.chom.2023.11.007

  • De Meulenaere, K. et al. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front. Cell. Infect. Microbiol. 12, 1011692. https://doi.org/10.3389/fcimb.2022.1011692 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruszczyk, J. et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science 359, 48–55. https://doi.org/10.1126/science.aan1078 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanjee, U. et al. Plasmodium vivax strains use alternative pathways for invasion. J. Infect. Dis. 223, 1817–1821. https://doi.org/10.1093/infdis/jiaa592 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malleret, B. et al. Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat. Microbiol. 6, 991–999. https://doi.org/10.1038/s41564-021-00939-3 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. K. et al. Complement receptor 1 is the human erythrocyte receptor for Plasmodium vivax erythrocyte binding protein. Proc. Natl. Acad. Sci. USA 121, e2316304121. https://doi.org/10.1073/pnas.2316304121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drew, D. R. et al. Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines. Cell. Mol. Life Sci. 80, 74. https://doi.org/10.1007/s00018-023-04712-z (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yap, A. et al. Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell. Microbiol. 16, 642–656. https://doi.org/10.1111/cmi.12287 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, A. et al. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Negl. Trop. Dis. 14, e0008234. https://doi.org/10.1371/journal.pntd.0008234 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngwana-Joseph, G. C. et al. Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance. Nat. Commun. 15, 10771. https://doi.org/10.1038/s41467-024-54964-x (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jennison, C. et al. Plasmodium vivax populations are more genetically diverse and less structured than sympatric Plasmodium falciparum populations. PLoS Negl. Trop. Dis. 9, e0003634. https://doi.org/10.1371/journal.pntd.0003634 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neafsey, D. E. et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat. Genet. 44, 1046–1050. https://doi.org/10.1038/ng.2373 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benavente, E. D. et al. Distinctive genetic structure and selection patterns in Plasmodium vivax from South Asia and East Africa. Nat. Commun. 12, 3160. https://doi.org/10.1038/s41467-021-23422-3 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kepple, D. et al. Plasmodium vivax from Duffy-Negative and Duffy-Positive individuals share similar gene pools in East Africa. J. Infect. Dis. 224, 1422–1431. https://doi.org/10.1093/infdis/jiab063 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, E. et al. Contrasting epidemiology and genetic variation of Plasmodium vivax infecting Duffy-negative individuals across Africa. Int. J. Infect. Dis. 108, 63–71. https://doi.org/10.1016/j.ijid.2021.05.009 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, J. R. et al. Evidence for transmission of Plasmodium vivax among a Duffy antigen negative population in Western Kenya. Am. J. Trop. Med. Hyg. 75, 575–581 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howes, R. E. et al. Global epidemiology of Plasmodium vivax. Am. J. Trop. Med. Hyg. 95, 15–34. https://doi.org/10.4269/ajtmh.16-0141 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumacher, R. F. & Spinelli, E. Malaria in children. Mediterr. J. Hematol. Infect. Dis. 4, e2012073. https://doi.org/10.4084/MJHID.2012.073 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koepfli, C. et al. Blood-Stage parasitaemia and age determine Plasmodium falciparum and P. vivax gametocytaemia in Papua new Guinea. PLoS One. 10, e0126747. https://doi.org/10.1371/journal.pone.0126747 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, E. et al. Differential patterns of infection and disease with P. falciparum and P. vivax in young Papua new Guinean children. PLoS One. 5, e9047. https://doi.org/10.1371/journal.pone.0009047 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tjitra, E. et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 5, e128. https://doi.org/10.1371/journal.pmed.0050128 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albsheer, M. M. A. et al. Distribution of Duffy phenotypes among Plasmodium vivax infections in Sudan. Genes (Basel) 10. https://doi.org/10.3390/genes10060437 (2019).

  • Ibrahim, A. et al. Selective whole genome amplification of plasmodium malariae DNA from clinical samples reveals insights into population structure. Sci. Rep. 10, 10832. https://doi.org/10.1038/s41598-020-67568-4 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachdeva, S., Ahmad, G., Malhotra, P., Mukherjee, P. & Chauhan, V. S. Comparison of immunogenicities of recombinant Plasmodium vivax merozoite surface protein 1 19- and 42-kiloDalton fragments expressed in Escherichia coli. Infect. Immun. 72, 5775–5782. https://doi.org/10.1128/IAI.72.10.5775-5782.2004 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez-Becerra, C. et al. Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua new Guinea using a multiplex assay. Malar. J. 9, 29. https://doi.org/10.1186/1475-2875-9-29 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auburn, S. et al. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of Pir genes. Wellcome Open Res. 1, 4. https://doi.org/10.12688/wellcomeopenres.9876.1 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlton, J. M. et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757–763. https://doi.org/10.1038/nature07327 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, E. D. et al. Naturally acquired human antibodies against reticulocyte-binding domains of Plasmodium vivax proteins, PvRBP2c and PvRBP1a, exhibit binding-inhibitory activity. J. Infect. Dis. 215, 1558–1568. https://doi.org/10.1093/infdis/jix170 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goo, Y. K. Vivax malaria and the potential role of the subtelomeric multigene vir superfamily. Microorganisms 10 https://doi.org/10.3390/microorganisms10061083 (2022).

  • VanBuren, R. et al. Extremely low nucleotide diversity in the X-linked region of Papaya caused by a strong selective sweep. Genome Biol. 17, 230. https://doi.org/10.1186/s13059-016-1095-9 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnott, A. et al. Global population structure of the genes encoding the malaria vaccine candidate, Plasmodium vivax apical membrane antigen 1 (PvAMA1). PLoS Negl. Trop. Dis. 7, e2506. https://doi.org/10.1371/journal.pntd.0002506 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mwesigwa, A. et al. Genetic diversity and population structure of Plasmodium falciparum across areas of varied malaria transmission intensities in Uganda. Malar. J. 24, 97. https://doi.org/10.1186/s12936-025-05325-6 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balloux, F. & Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11, 155–165. https://doi.org/10.1046/j.0962-1083.2001.01436.x (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Goodswen, S. J., Kennedy, P. J., Ellis, J. T. A. & Gene-based positive selection detection approach to identify vaccine candidates using toxoplasma gondii as a test case protozoan pathogen. Front. Genet. 9. https://doi.org/10.3389/fgene.2018.00332 (2018).

  • Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304. https://doi.org/10.1371/journal.pgen.1000304 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Early, A. M. et al. Host-mediated selection impacts the diversity of Plasmodium falciparum antigens within infections. Nat. Commun. 9, 1381. https://doi.org/10.1038/s41467-018-03807-7 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, G. J. & Rayner, J. C. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog. 10, e1003943. https://doi.org/10.1371/journal.ppat.1003943 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hester, J. et al. De Novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes. PLoS Negl. Trop. Dis. 7, e2569. https://doi.org/10.1371/journal.pntd.0002569 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ntumngia, F. B. et al. A Novel Erythrocyte Binding Protein of Plasmodium vivax Suggests an Alternate Invasion Pathway into Duffy-Positive Reticulocytes. mBio 7 (2016). https://doi.org/10.1128/mBio.01261-16

  • Dieng, C. C. et al. Epidemiological Insights and Duffy Binding Protein Evolution of Plasmodium vivax in Duffy-Negative Cameroonians. medRxiv (2025). https://doi.org/10.1101/2025.05.29.25328521

  • Tapaopong, P. et al. Genetic diversity and molecular evolution of Plasmodium vivax Duffy binding protein and merozoite surface protein-1 in Northwestern Thailand. Infect. Genet. Evol. 113, 105467. https://doi.org/10.1016/j.meegid.2023.105467 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carugo, O. & Pongor, S. A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Sci. 10, 1470–1473. https://doi.org/10.1110/ps.690101 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chothia, C. & Lesk, A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826. https://doi.org/10.1002/j.1460-2075.1986.tb04288.x (1986).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira, M. U., da Silva Nunes, M. & Wunderlich, G. Antigenic diversity and immune evasion by malaria parasites. Clin. Diagn. Lab. Immunol. 11, 987–995. https://doi.org/10.1128/cdli.11.6.987-995.2004 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Consortium, T. U. UniProt: the universal protein knowledgebase in 2025. Nucleic Acids Res. 53, D609–D617. https://doi.org/10.1093/nar/gkae1010 (2024).

    Article 

    Google Scholar
     

  • Zeeshan, M., Bora, H. & Sharma, Y. D. Presence of memory T cells and naturally acquired antibodies in Plasmodium vivax malaria-exposed individuals against a group of tryptophan-rich antigens with conserved sequences. J. Infect. Dis. 207, 175–185. https://doi.org/10.1093/infdis/jis650 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. Malaria microscopy quality assurance manual-version 2. (2016).

  • Makler, M. T., Palmer, C. J. & Ager, A. L. A review of practical techniques for the diagnosis of malaria. Ann. Trop. Med. Parasitol. 92, 419–433. https://doi.org/10.1080/00034989859401 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamid, M. M. A. et al. Diagnostic accuracy of an automated microscope solution (miLab) in detecting malaria parasites in symptomatic patients at point-of-care in sudan: a case-control study. Malar. J. 23, 200. https://doi.org/10.1186/s12936-024-05029-3 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, E. et al. Frequent expansion of Plasmodium vivax Duffy binding protein in Ethiopia and its epidemiological significance. PLoS Negl. Trop. Dis. 13, e0007222. https://doi.org/10.1371/journal.pntd.0007222 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snounou, G. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol. Biol. 50, 263–291. https://doi.org/10.1385/0-89603-323-6:263 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lo, E. et al. Molecular epidemiology of Plasmodium vivax and Plasmodium falciparum malaria among Duffy-positive and Duffy-negative populations in Ethiopia. Malar. J. 14, 84. https://doi.org/10.1186/s12936-015-0596-4 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, S. C. et al. Real-time quantitative reverse transcription PCR for monitoring of blood-stage Plasmodium falciparum infections in malaria human challenge trials. Am. J. Trop. Med. Hyg. 86, 383–394. https://doi.org/10.4269/ajtmh.2012.10-0658 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, S. et al. Prevalence and distribution of Plasmodium vivax Duffy binding protein gene duplications in Sudan. PLoS One 18, e0287668. https://doi.org/10.1371/journal.pone.0287668 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chittoria, A., Mohanty, S., Jaiswal, Y. K. & Das, A. Natural selection mediated association of the Duffy (FY) gene polymorphisms with Plasmodium vivax malaria in India. PLoS One 7, e45219. https://doi.org/10.1371/journal.pone.0045219 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pogo, A. O. & Chaudhuri, A. The Duffy protein: a malarial and chemokine receptor. Semin Hematol. 37, 122–129. https://doi.org/10.1016/s0037-1963(00)90037-4 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auburn, S. et al. An effective method to purify Plasmodium falciparum DNA directly from clinical blood samples for whole genome high-throughput sequencing. PLoS One 6, e22213. https://doi.org/10.1371/journal.pone.0022213 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • PlasmoDB. An integrative database of the Plasmodium falciparum genome. Tools for accessing and analyzing finished and unfinished sequence data. The plasmodium genome database collaborative. Nucleic Acids Res. 29, 66–69. https://doi.org/10.1093/nar/29.1.66 (2001).

    Article 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of samtools and BCFtools. Gigascience 10 https://doi.org/10.1093/gigascience/giab008 (2021).

  • Van der Auwera, G. & O’Connor, B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). (O’Reilly Media, Inc., 2020).

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, snpeff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92. https://doi.org/10.4161/fly.19695 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278. https://doi.org/10.1093/bioinformatics/btu531 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kepple, D. et al. Alternative invasion mechanisms and host immune response to Plasmodium vivax malaria: trends and future directions. Microorganisms 9. https://doi.org/10.3390/microorganisms9010015 (2020).

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630, 493–500. https://doi.org/10.1038/s41586-024-07487-w (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, E. C. et al. UCSF chimerax: tools for structure Building and analysis. Protein Sci. 32, e4792. https://doi.org/10.1002/pro.4792 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 
    PubMed 

    Google Scholar