Radiation as an immune modulator: mechanisms and implications for combination with immunotherapy

Radiation as an immune modulator: mechanisms and implications for combination with immunotherapy

  • Darragh, L. B., Oweida, A. J. & Karam, S. D. Overcoming resistance to combination radiation-immunotherapy: a focus on contributing pathways within the tumor microenvironment. Front. Immunol. 9, 3154 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lhuillier, C., Rudqvist, N. P., Elemento, O., Formenti, S. C. & Demaria, S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med. 11, 40 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Passelli, K., Reparaz, D., Kinj, R. & Herrera, F. G. Strategies for overcoming tumor resistance to immunotherapy: harnessing the power of radiation therapy. Br. J. Radiol. 9, 1378–1390 (2024).

    Article 

    Google Scholar
     

  • Hall, E. J. & Giaccia, A. J. Radiobiology for the Radiologist (Harper & Row, 2006).

  • Tanderup, K., Eifel, P. J., Yashar, C. M., Potter, R. & Grigsby, P. W. Curative radiation therapy for locally advanced cervical cancer: brachytherapy is NOT optional. Int. J. Radiat. Oncol. Biol. Phys. 88, 537–539 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Grimm, P. D., Blasko, J. C., Sylvester, J. E., Meier, R. M. & Cavanagh, W. 10-year biochemical (prostate-specific antigen) control of prostate cancer with (125)I brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 51, 31–40 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benedict, S. H. et al. Stereotactic body radiation therapy: the report of AAPM task group 101. Med. Phys. 37, 4078–4101 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Buchberger, D. S. & Videtic, G. M. M. Stereotactic body radiotherapy for the management of early-stage non-small-cell lung cancer: a clinical overview. JCO Oncol. Pract. 19, 239–249 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, L. et al. Impact of neoadjuvant chemoradiotherapy on the local recurrence and distant metastasis pattern of locally advanced rectal cancer: a propensity score-matched analysis. Chin. Med. J. 134, 2196–2204 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreira, A. S. L., Cunha, T. M. & Esteves, S. Cervical cancer recurrence — can we predict the type of recurrence? Diagn. Interv. Radiol. 26, 403–410 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Failure patterns of recurrence and metastasis after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma: results of a multicentric clinical study. Front. Oncol. 11, 693199 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pitakpaiboonkul, P., Jiarpinitnun, C., Pattaranutaporn, P. & Ngamphaiboon, N. Early recurrence, time-to-recurrence, and recurrence patterns: assessing their impact on survival outcomes in head and neck squamous cell carcinoma (R/M-HNSCC) patients treated with first line platinum-based chemotherapy. Cancer Med. 13, e7047 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darragh, L. B. et al. A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC. Nat. Cancer 3, 1300–1317 (2022). A phase I/Ib trial combining neoadjuvant SBRT with durvalumab (anti-PDL1) in resectable human papillomavirus (HPV)-unrelated locally advanced HNSCC that demonstrated safety and achieved high rates of major pathological responses and complete responses in the 24 Gy expansion cohort.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera, F. G. et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12, 108–133 (2022). This study demonstrated, in preclinical models and a phase I clinical trial in patients with tumours lacking immune infiltration, that radiation (0.5–1 Gy per fraction) combined with ICB and immunomodulatory agents can increase T cell infiltration into the TME.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oweida, A. J. et al. STAT3 modulation of regulatory T cells in response to radiation therapy in head and neck cancer. J. Natl Cancer Inst. 111, 1339–1349 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, N. Y. et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 22, 450–462 (2021). The JAVELIN Head and Neck 100 phase III trial showed no benefit from adding avelumab (anti-PDL1) to definitive chemoradiotherapy in locally advanced HNSCC, representing the first negative ICB–chemoradiotherapy combination trial in this setting.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machiels, J. P. et al. Pembrolizumab plus concurrent chemoradiotherapy versus placebo plus concurrent chemoradiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck (KEYNOTE-412): a randomised, double-blind, phase 3 trial. Lancet Oncol. 25, 572–587 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mell, L. K. et al. Radiotherapy with cetuximab or durvalumab for locoregionally advanced head and neck cancer in patients with a contraindication to cisplatin (NRG-HN004): an open-label, multicentre, parallel-group, randomised, phase 2/3 trial. Lancet Oncol. 25, 1576–1588 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higgins, K. et al. Concurrent chemoradiation ± atezolizumab (atezo) in limited-stage small cell lung cancer (LS-SCLC): results of NRG Oncology/Alliance LU005. Int. J. Radiat. Oncol. Biol. Phys. 120, S2 (2024).

    Article 

    Google Scholar
     

  • Bradley, J. D. et al. PACIFIC-2: phase 3 study of concurrent durvalumab and platinum-based chemoradiotherapy in patients with unresectable, stage III NSCLC. J. Clin. Oncol. 37, TPS8573 (2019). The Pacific-2 phase III trial failed to demonstrate improved progression-free survival with concurrent durvalumab (anti-PDL1) plus chemoradiotherapy versus chemoradiotherapy alone in unresectable stage III NSCLC, despite the success of sequential durvalumab in the original Pacific trial.

    Article 

    Google Scholar
     

  • Uppaluri, R. et al. Neoadjuvant and adjuvant pembrolizumab in locally advanced head and neck cancer. N. Engl. J. Med. 393, 37–50 (2025). The Keynote-689 phase III trial demonstrated improvement in event-free survival with perioperative pembrolizumab (anti-PD1) plus SOC (surgery followed by adjuvant chemoradiotherapy) versus SOC in resectable locally advanced HNSCC, marking the first successful ICB trial in the curative-intent setting for this disease.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lorusso, D. et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial. Lancet 403, 1341–1350 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demaria, S. et al. Radiation dose and fraction in immunotherapy: one-size regimen does not fit all settings, so how does one choose? J. Immunother. Cancer 9, e002038 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galluzzi, L., Aryankalayil, M. J., Coleman, C. N. & Formenti, S. C. Emerging evidence for adapting radiotherapy to immunotherapy. Nat. Rev. Clin. Oncol. 20, 543–557 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vozenin, M. C., Montay-Gruel, P., Tsoutsou, P. & Limoli, C. L. Mechanisms, challenges and opportunities for FLASH radiotherapy in cancer. Nat. Rev. Cancer 26, 62–75 (2026).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yovino, S., Kleinberg, L., Grossman, S. A., Narayanan, M. & Ford, E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 31, 140–144 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kut, C. et al. Developing the POTOMAC model: a novel prediction model to study the impact of lymphopenia kinetics on survival outcomes in head and neck cancer via an ensemble tree-based machine learning approach. JCO Clin. Cancer Inf. 7, e2300058 (2023).


    Google Scholar
     

  • Prades-Sagarra, E., Yaromina, A. & Dubois, L. J. Understanding the impact of radiation-induced lymphopenia: preclinical and clinical research perspectives. Clin. Transl. Radiat. Oncol. 49, 100852 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Huang, C. & Li, S. Influence of treatment-related lymphopenia on the efficacy of immune checkpoint inhibitors in lung cancer: a meta-analysis. Front. Oncol. 13, 1287555 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pike, L. R. G. et al. The impact of radiation therapy on lymphocyte count and survival in metastatic cancer patients receiving PD-1 immune checkpoint inhibitors. Int. J. Radiat. Oncol. Biol. Phys. 103, 142–151 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellsworth, S. G. et al. Lymphocyte depletion rate as a biomarker of radiation dose to circulating lymphocytes during fractionated partial-body radiation therapy. Adv. Radiat. Oncol. 7, 100959 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, G. et al. Lymphocyte-sparing effect of stereotactic body radiation therapy compared to conventional fractionated radiation therapy in patients with locally advanced pancreatic cancer. BMC Cancer 19, 977 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darragh, L. B. et al. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat. Commun. 13, 7015 (2022). This study demonstrated that elective nodal irradiation impairs the systemic immune response generated by a combination of radiation and immunotherapy in HNSCC by reducing antigen-specific CD4+ T cells locally and systemically, leading to increased local and distant tumour growth compared with tumour-only radiation approaches.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knitz, M. W. et al. Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis. J. Immunother. Cancer 9, e001955 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leidner, R. et al. Neoadjuvant immunoradiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma. J. Immunother. Cancer 9, e002485 (2021). A phase Ib trial combining SBRT and nivolumab (anti-PD1) in locally advanced HNSCC demonstrating high rates of major pathological response and tumour downstaging after pathological evaluation.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Formenti, S. C. et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 24, 1845–1851 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang, C. L. et al. Survival outcome analysis of stereotactic body radiotherapy and immunotherapy (SBRT-IO) versus SBRT-alone in unresectable hepatocellular carcinoma. Liver Cancer 13, 265–276 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gunther, J. R. et al. Response-adapted ultra-low-dose 4 Gy radiation as definitive therapy of gastric MALT lymphoma: a single-centre, pilot trial. Lancet Haematol. 11, e521–e529 (2024). A pilot trial treating patients with mucosa-associated lymphoid tissue (MALT) lymphoma with 4 Gy (2 Gy per fraction) demonstrated high rates of local tumour control and minimal toxicity.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zebley, C. C. & Youngblood, B. Mechanisms of T cell exhaustion guiding next-generation immunotherapy. Trends Cancer 8, 726–734 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Passaro, A. et al. Cancer biomarkers: emerging trends and clinical implications for personalized treatment. Cell 187, 1617–1635 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lussier, D. M. et al. Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads. Proc. Natl Acad. Sci. USA 118, e2102611118 (2021). This study demonstrated that irradiation of a mouse sarcoma cell line with 4–9 Gy could induce neoantigens, rendering previously non-immunogenic tumours susceptible to ICB.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • du Bois, H., Heim, T. A. & Lund, A. W. Tumor-draining lymph nodes: at the crossroads of metastasis and immunity. Sci. Immunol. 6, eabg3551 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Low-dose irradiation of the gut improves the efficacy of PD-L1 blockade in metastatic cancer patients. Cancer Cell 43, 361–379.e10 (2025). Intestinal low-dose radiation synergizes with ICB in both preclinical studies and patients with metastatic cancer to increase dendritic cell trafficking to TDLNs.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, S. et al. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct. Target. Ther. 8, 205 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piper, M. et al. Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy inhibits pancreatic cancer growth and metastasis. Cancer Cell 41, 950–969.e6 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, Y. et al. Radiotherapy enhances metastasis through immune suppression by inducing PD-L1 and MDSC in distal sites. Clin. Cancer Res. 30, 1945–1958 (2024). Single-fraction 20 Gy radiotherapy increases metastasis through induction of PDL1 expression and MDSC recruitment, which can be reversed by blocking PDL1 or MDSCs.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Neoadjuvant radioimmunotherapy in pancreatic cancer enhances effector T cell infiltration and shortens their distances to tumor cells. Sci. Adv. 10, eadk1827 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. et al. Combination radiation and αPD-L1 enhance tumor control by stimulating CD8+ PD-1+ TCF-1+ T cells in the tumor-draining lymph node. Nat. Commun. 16, 3522 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Telarovic, I. et al. Delayed tumor-draining lymph node irradiation preserves the efficacy of combined radiotherapy and immune checkpoint blockade in models of metastatic disease. Nat. Commun. 15, 5500 (2024). Irradiation of TDLNs was shown to decrease local and distant tumour control when done concurrently with ICB, but not when lymph node irradiation is delayed or given adjunctly.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, D. et al. Dual effects of radiotherapy on tumor microenvironment and its contribution towards the development of resistance to immunotherapy in gastrointestinal and thoracic cancers. Front. Cell Dev. Biol. 11, 1266537 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, J. et al. Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction. Nat. Cancer 4, 43–61 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, J. et al. Targeting interferon-driven inflammatory memory prevents epigenetic evolution of cancer immunotherapy resistance. Preprint at bioRxiv https://doi.org/10.1101/2024.08.13.607862 (2024).

  • Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185, 1924–1942.e23 (2022). This study provided a mechanistic basis for the well-established clinical correlation between lymph node involvement and poor clinical prognosis across solid malignancies by showing that lymph node colonization by tumour cells induces broad immune tolerance.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016). This study revealed that prolonged IFN signalling in tumours drives adaptive resistance to ICB through STAT1-mediated upregulation of multiple inhibitory pathways and demonstrates that disrupting tumour IFN signalling can restore sensitivity to ICB monotherapy in otherwise resistant tumours.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacquelot, N. et al. Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 29, 846–861 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaue, D. et al. Radiation and inflammation. Semin. Radiat. Oncol. 25, 4–10 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J., Xu, Z., Wang, Z., Du, G. & Lun, L. TGF-beta signaling in cancer radiotherapy. Cytokine 148, 155709 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jobling, M. F. et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat. Res. 166, 839–848 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farhood, B. et al. TGF-beta in radiotherapy: mechanisms of tumor resistance and normal tissues injury. Pharmacol. Res. 155, 104745 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Abdelhakiem, M. K. et al. TH2 cells are associated with tumor recurrence following radiation. Cancers 16, 1586 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, G., Zhang, H., Xie, C. H. & Zhou, Y. F. TH2-like immune response in radiation-induced lung fibrosis. Oncol. Rep. 26, 383–388 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502.e15 (2017). This study demonstrated that effective cancer immunotherapy requires coordinated immune responses across multiple anatomical sites rather than being limited to the TME.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saddawi-Konefka, R. et al. Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. Nat. Commun. 13, 4298 (2022). Surgical removal or irradiation of the TDLNs was shown here to decrease local tumour control in mouse models of HNSCC treated with ICB.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saddawi-Konefka, R., Schokrpur, S. & Gutkind, J. S. Let it be: preserving tumor-draining lymph nodes in the era of immuno-oncology. Cancer Cell 42, 930–933 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Pul, K. M., Fransen, M. F., van de Ven, R. & de Gruijl, T. D. Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy. Front. Immunol. 12, 643291 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saddawi-Konefka, R. et al. The tumor-sentinel lymph node immuno-migratome reveals CCR7(+) dendritic cells drive response to sequenced immunoradiotherapy. Nat. Commun. 16, 6578 (2025). This study demonstrates that tumour-directed radiation before ICB promotes immune cell migration to the TDLNs, and this can be effectively disrupted by lymph node radiation or surgical excision.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuda, T. et al. TCR sequencing analysis of cancer tissues and tumor draining lymph nodes in colorectal cancer patients. Oncoimmunology 8, e1588085 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miron, M. et al. Human lymph nodes maintain TCF-1(hi) memory T cells with high functional potential and clonal diversity throughout life. J. Immunol. 201, 2132–2140 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schenkel, J. M. et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1(+) CD8(+) T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353.e6 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molodtsov, A. K. et al. Resident memory CD8(+) T cells in regional lymph nodes mediate immunity to metastatic melanoma. Immunity 54, 2117–2132.e7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connolly, K. A. et al. A reservoir of stem-like CD8(+) T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escobar, G. et al. Tumor immunogenicity dictates reliance on TCF1 in CD8(+) T cells for response to immunotherapy. Cancer Cell 41, 1662–1679.e7 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marciscano, A. E. et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin. Cancer Res. 24, 5058–5071 (2018). Elective nodal irradiation was shown to decrease local tumour control in a mouse model of melanoma by decreasing antigen-specific CD8+ T cells in the TME.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchwald, Z. S. et al. Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy. J. Immunother. Cancer 8, e000867 (2020). This study demonstrated that TDLNs are a critical reserve for stem-like CD8+ T cells and because these cells are essential for the radiation-induced abscopal effect, targeting these lymph nodes with radiation prevents systemic antitumour immunity.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018). This pivotal phase III trial established durvalumab (anti-PD1) maintenance therapy as the new standard of care for stage III unresectable NSCLC.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Cancer immunotherapy responses persist after lymph node resection. Preprint at bioRxiv https://doi.org/10.1101/2023.09.19.558262 (2024).

  • Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reiter, J. G. et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat. Genet. 52, 692–700 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, E. R. et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leong, S. P., Naxerova, K., Keller, L., Pantel, K. & Witte, M. Molecular mechanisms of cancer metastasis via the lymphatic versus the blood vessels. Clin. Exp. Metastasis 39, 159–179 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lukens, J. N., Huang, A. C., Minn, A. J. III & Maity, A. Immune profiling of ‘Radvax’ abscopal responses in metastatic melanoma patients progressing on anti-PD1 therapy treated with hypofractionated radiotherapy (HFRT) to one lesion combined with pembrolizumab. Int. J. Radiat. Oncol. Biol. Phys. 120, S89–S90 (2024).

    Article 

    Google Scholar
     

  • Lukens, J. N. et al. Final results of a phase I ‘RadVax’ trial of hypofractionated radiation combined with pembrolizumab in patients with metastatic solid tumors. J. Clin. Oncol. 39, 2576 (2021).

    Article 

    Google Scholar
     

  • Naxerova, K. et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357, 55–60 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. et al. Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat. Commun. 11, 1993 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ullah, I. et al. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J. Clin. Invest. 128, 1355–1370 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venet, D. et al. Phylogenetic reconstruction of breast cancer reveals two routes of metastatic dissemination associated with distinct clinical outcome. eBioMedicine 56, 102793 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sher, D. J. et al. Efficacy and quality-of-life following involved nodal radiotherapy for head and neck squamous cell carcinoma: the INRT-AIR phase II clinical trial. Clin. Cancer Res. 29, 3284–3291 (2023). A phase II clinical trial in patients with HNSCC that showed omitting ENI could improve patient’s quality-of-life without increasing elective nodal recurrence.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holzgreve, A. et al. PSMA-PET/CT findings in patients with high-risk biochemically recurrent prostate cancer with no metastatic disease by conventional imaging. JAMA Netw. Open 8, e2452971 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sher, D. J. et al. Prospective phase 2 study of radiation therapy dose and volume de-escalation for elective neck treatment of oropharyngeal and laryngeal cancer. Int. J. Radiat. Oncol. Biol. Phys. 109, 932–940 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Seiwert, T. Y. et al. OPTIMA: a phase II dose and volume de-escalation trial for human papillomavirus-positive oropharyngeal cancer. Ann. Oncol. 30, 297–302 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castelli, J. et al. 852MO REWRITE-GORTEC 2018-02: radiotherapy-durvalumab without prophylactic neck irradiation in squamous cell carcinoma of the head and neck. Ann. Oncol. 35, S615 (2024). This phase II clinical trial in patients with HNSCC demonstrated that reduced prophylactic neck irradiation combined with durvalumab (anti-PDL1) achieved excellent local control rates, suggesting that selective volume reduction may be feasible with concurrent immunotherapy without compromising outcomes.

    Article 

    Google Scholar
     

  • Ma, T. M. et al. High recurrence for HPV-positive oropharyngeal cancer with neoadjuvant radiation therapy to gross disease plus immunotherapy: analysis from a prospective phase Ib/II clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 117, 348–354 (2023). This phase Ib/II clinical trial in HPV-related HNSCC had high rates of locoregional nodal recurrence in patients treated with combination neoadjuvant radiation and both durvalumab (anti-PDL1) and tremelimumab (anti-CTLA-4), without ENI.

    Article 
    PubMed 

    Google Scholar
     

  • Sher, D. J. et al. Acute toxicity and efficiency outcomes in the DARTBOARD randomized trial of daily adaptive radiotherapy for head and neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 117, e6 (2023).

    Article 

    Google Scholar
     

  • Schoenfeld, J. D. Proceed with caution: eliminating elective nodal irradiation with immunotherapy for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 117, 355–356 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Soeung, M. et al. Nivolumab plus ipilimumab induce hyper-progression in renal medullary carcinoma: results of a phase II trial and preclinical evidence. Nat. Commun. 16, 10474 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gadwa, J. et al. Selective targeting of IL2Rβγ combined with radiotherapy triggers CD8- and NK-mediated immunity, abrogating metastasis in HNSCC. Cell Rep. Med. 4, 101150 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, D., Lynch, C., Pitroda, S. P. & Weichselbaum, R. R. Facts and hopes in radioimmunotherapy of oligometastatic disease. Clin. Cancer Res. 31, 2556–2564 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palma, D. A. et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET phase II randomized trial. J. Clin. Oncol. 38, 2830–2838 (2020). This phase II clinical trial demonstrated improved overall survival in multiple oligometastatic cancers when patients were treated with SABR to multiple lesions.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, B. M. et al. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 26, 1125–1134 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 27, 152–164 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, S. S. et al. Intertumoral genetic heterogeneity generates distinct tumor microenvironments in a novel murine synchronous melanoma model. Cancers 13, 2293 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McBride, S. et al. Randomized phase II trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma. J. Clin. Oncol. 39, 30–37 (2021). A phase II clinical trial combining nivolumab and SBRT to a single metastatic lesion that failed to show an abscopal effect in metastatic HNSCC.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05721755 (2023).

  • US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03546582 (2018).

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06211335 (2023).

  • Cantor, D. J. et al. Brief report: long-term follow-up of adjuvant pembrolizumab after locally ablative therapy for oligometastatic NSCLC. JTO Clin. Res. Rep. 5, 100667 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauml, J. M. et al. Pembrolizumab after completion of locally ablative therapy for oligometastatic non-small cell lung cancer: a phase 2 trial. JAMA Oncol. 5, 1283–1290 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A. & Formenti, S. C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 1, 365–372 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welsh, J. W. et al. Phase II trial of ipilimumab with stereotactic radiation therapy for metastatic disease: outcomes, toxicities, and low-dose radiation-related abscopal responses. Cancer Immunol. Res. 7, 1903–1909 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menon, H. et al. Influence of low-dose radiation on abscopal responses in patients receiving high-dose radiation and immunotherapy. J. Immunother. Cancer 7, 237 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, J. et al. Sequence of alphaPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci. Immunol. 6, eabg0117 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, K. H. et al. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS ONE 11, e0157164 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunderson, A. J. & Young, K. H. Exploring optimal sequencing of radiation and immunotherapy combinations. Adv. Radiat. Oncol. 3, 494–505 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zandberg, D. P. et al. 856MO — a randomized phase II study of concurrent vs. sequential pembrolizumab with chemoradiation (CRT) in locally advanced head and neck cancer (LA HNSCC): 4-year results and tumor-immune microenvironment analysis. Ann. Oncol. 34, S557–S558 (2023).

    Article 

    Google Scholar
     

  • Pearson, A. T. et al. A randomized, double-blind, placebo-controlled phase II study of adjuvant pembrolizumab versus placebo in patients with head and neck squamous cell cancers at high risk for recurrence: the PATHWay study. J. Clin. Oncol. 42, 6008 (2024).

    Article 

    Google Scholar
     

  • Haddad, R. et al. Atezolizumab in high-risk locally advanced squamous cell carcinoma of the head and neck: a randomized clinical trial. JAMA 333, 1599–1607 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mowery, Y. M. et al. Safety and efficacy of pembrolizumab, radiation therapy, and surgery versus radiation therapy and surgery for stage III soft tissue sarcoma of the extremity (SU2C-SARC032): an open-label, randomised clinical trial. Lancet 404, 2053–2064 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azarov, I., Peskov, K., Helmlinger, G. & Kosinsky, Y. Role of T cell-to-dendritic cell chemoattraction in T cell priming initiation in the lymph node: an agent-based modeling study. Front. Immunol. 10, 1289 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linderman, J. J. et al. Characterizing the dynamics of CD4+  T cell priming within a lymph node. J. Immunol. 184, 2873–2885 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, C. et al. Personalized ultrafractionated stereotactic adaptive radiotherapy (PULSAR) in preclinical models enhances single-agent immune checkpoint blockade. Int. J. Radiat. Oncol. Biol. Phys. 110, 1306–1316 (2021). This preclinical study demonstrates that PULSAR increases ICB efficacy, suggesting that extended interfraction intervals may better synergize with ICB to preserve the immune cell function between doses.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04779489 (2024).

  • Suzuki, K. et al. Anti-PD-1 antibodies recognizing the membrane-proximal region are PD-1 agonists that can down-regulate inflammatory diseases. Sci. Immunol. 8, eadd4947 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goswami, S., Pauken, K. E., Wang, L. & Sharma, P. Next-generation combination approaches for immune checkpoint therapy. Nat. Immunol. 25, 2186–2199 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, X. et al. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 23, 108 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamada, T. et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geels, S. N. et al. Interruption of the intratumor CD8(+) T cell:Treg crosstalk improves the efficacy of PD-1 immunotherapy. Cancer Cell 42, 1051–1066.e7 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. J. et al. Deletion of PD-1 destabilizes the lineage identity and metabolic fitness of tumor-infiltrating regulatory T cells. Nat. Immunol. 24, 148–161 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05053737 (2021).

  • Huang, X. et al. Immunogenic chemotherapy: great potential for improving response rates. Front. Oncol. 13, 1308681 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, Y. H. et al. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat. Commun. 11, 6175 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emmons, T. R. et al. Abstract 3791: tumor cells surviving DNA damage acquire antigen presenting functions to stimulate anti-tumor immunity. Cancer Res. 85, 3791–3791 (2025).

    Article 

    Google Scholar
     

  • Jagodinsky, J. C. et al. Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci. Transl. Med. 16, eadk0642 (2024). This study demonstrated that a single fraction of heterogeneous intratumoural radiotherapy induces dose-dependent immunomodulatory effects, with high, medium and lose doses each activating distinct immune mechanisms that together support a better response to ICB than homogeneous irradiation.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaderi, N. et al. A century of fractionated radiotherapy: how mathematical oncology can break the rules. Int. J. Mol. Sci. 23, 1316 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaderi, N., Jung, J. H., Odde, D. J. & Peacock, J. Clinically validated model predicts the effect of intratumoral heterogeneity on overall survival for non-small cell lung cancer (NSCLC) patients. Comput. Methods Prog. Biomed. 212, 106455 (2021).

    Article 

    Google Scholar
     

  • Gadwa, J. et al. Divergent response to radio-immunotherapy is defined by intrinsic features of the tumor microenvironment. J. Immunother. Cancer 13, e010405 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, E. et al. Personalized treatment in HPV + oropharynx cancer using genomic adjusted radiation dose. J. Clin. Invest. 135, e194073 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John, J. et al. Divergent outcomes of anti-PD-L1 treatment coupled with host-intrinsic differences in TCR repertoire and distinct T cell activation states in responding versus non-responding tumors. Front. Immunol. 13, 992630 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, T. et al. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat. Rev. Cancer 24, 338–355 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forsyth, K. S., Jiwrajka, N., Lovell, C. D., Toothacre, N. E. & Anguera, M. C. The conneXion between sex and immune responses. Nat. Rev. Immunol. 24, 487–502 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, X. et al. The inter-link of ageing, cancer and immunity: findings from real-world retrospective study. Immun. Ageing 20, 75 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhivaki, D. et al. Correction of age-associated defects in dendritic cells enables CD4(+) T cells to eradicate tumors. Cell 187, 3888–3903.e18 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang, X. et al. Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis. Nature 637, 184–194 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houlahan, K. E. et al. Germline-mediated immunoediting sculpts breast cancer subtypes and metastatic proclivity. Science 384, eadh8697 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golonko, A. et al. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis. 15, 254 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gustafson, M. P. et al. Exercise and the immune system: taking steps to improve responses to cancer immunotherapy. J. Immunother. Cancer 9, e001872 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haynes, L. Aging of the immune system: research challenges to enhance the health span of older adults. Front. Aging 1, 602108 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, P.-J. et al. Aging-induced changes in lymphatic muscle cell transcriptomes are associated with reduced pumping of peripheral collecting lymphatic vessels in mice. Dev. Cell 60, 1118–1133.e5 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irelli, A., Sirufo, M. M., D’Ugo, C., Ginaldi, L. & De Martinis, M. Sex and gender influences on cancer immunotherapy response. Biomedicines 8, 232 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, D. et al. Sexual dimorphism in the incidence of human cancers. BMC Cancer 19, 684 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 9, 132 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holder, A. M. et al. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat. Rev. Cancer 24, 498–512 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N. H. et al. Radiation-induced PD-L1 expression in tumor and its microenvironment facilitates cancer-immune escape: a narrative review. Ann. Transl. Med. 10, 1406 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4(+) T cells in cancer immunotherapy — new insights into old paradigms. Cancer Gene Ther. 28, 5–17 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kagamu, H. et al. CD4(+) T-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy. Cancer Immunol. Res. 8, 334–344 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laheurte, C. et al. Distinct prognostic value of circulating anti-telomerase CD4(+) Th1 immunity and exhausted PD-1(+)/TIM-3(+) T cells in lung cancer. Br. J. Cancer 121, 405–416 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duhen, R. et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat. Commun. 12, 1047 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holm, J. S. et al. Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma. Nat. Commun. 13, 1935 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brueckl, W. M. Dynamic change of CD8(+) T cell: immunotherapy fate tell? Transl. Lung Cancer Res. 12, 944–947 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, D. H. et al. Circulating regulatory T cells predict efficacy and atypical responses in lung cancer patients treated with PD-1/PD-L1 inhibitors. Cancer Immunol. Immunother. 71, 579–588 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Predicting patient outcomes after treatment with immune checkpoint blockade: a review of biomarkers derived from diverse data modalities. Cell Genom. 4, 100444 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sultan, H. et al. Neoantigen-specific cytotoxic Tr1 CD4 T cells suppress cancer immunotherapy. Nature 632, 182–191 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. A high interferon gamma signature of CD8(+) T cells predicts response to neoadjuvant immunotherapy plus chemotherapy in gastric cancer. Front. Immunol. 13, 1056144 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, T., Lu, J. & An, H. The relative change in regulatory T cells/T helper lymphocytes ratio as parameter for prediction of therapy efficacy in metastatic colorectal cancer patients. Oncotarget 8, 109079–109093 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinicrope, F. A. et al. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137, 1270–1279 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q., Sun, Z. & Chen, L. Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell 11, 549–564 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, J., Khatwani, N., Searles, T. G., Turk, M. J. & Angeles, C. V. Memory CD8(+) T cell responses to cancer. Semin. Immunol. 49, 101435 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piper, M. et al. Targeting Treg-expressed STAT3 enhances NK-mediated surveillance of metastasis and improves therapeutic response in pancreatic adenocarcinoma. Clin. Cancer Res. 28, 1013–1026 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ettinger, D. S. et al. Non-small cell lung cancer, version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Canc. Netw. 20, 497–530 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Anagnostou, V. et al. ctDNA response after pembrolizumab in non-small cell lung cancer: phase 2 adaptive trial results. Nat. Med. 29, 2559–2569 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, R. J. et al. Neoadjuvant nivolumab or nivolumab plus LAG-3 inhibitor relatlimab in resectable esophageal/gastroesophageal junction cancer: a phase Ib trial and ctDNA analyses. Nat. Med. 30, 1023–1034 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bittla, P. et al. Exploring circulating tumor DNA (ctDNA) and its role in early detection of cancer: a systematic review. Cureus 15, e45784 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, Q. et al. Tracking neoantigens by personalized circulating tumor DNA sequencing during checkpoint blockade immunotherapy in non-small cell lung cancer. Adv. Sci. 7, 1903410 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther. 8, 9 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valpione, S. et al. The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival. Nat. Commun. 12, 4098 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar