Sepsis and the immunometabolic inflammatory response

Sepsis and the immunometabolic inflammatory response

  • Angus, D. C. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 395, 200–211 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiersinga, W. J., Leopold, S. J., Cranendonk, D. R. & van der Poll, T. Host innate immune responses to sepsis. Virulence 5, 36–44 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Van Wyngene, L., Vandewalle, J. & Libert, C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol. Med. 10, 1–18 (2018).


    Google Scholar
     

  • Willmann, K. & Moita, L. F. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 36, 927–946 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, M., Wang, G. & Xie, J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov 9, 465 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delano, M. J. & Ward, P. A. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 274, 330–353 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, A., Luan, H. H. & Medzhitov, R. An evolutionary perspective on immunometabolism. Science 363, 1–8 (2019).

    Article 

    Google Scholar
     

  • van der Poll, T., Shankar-Hari, M. & Wiersinga, W. J. The immunology of sepsis. Immunity 54, 2450–2464 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hotchkiss, R. S., Monneret, G. & Payen, D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 13, 260–268 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soto-Heredero, G. Glycolysis – a key player in the inflammatory response. Febs j 287, 3350–3369 (2020). Gómez de Las Heras, M. M., Gabandé-Rodríguez, E., Oller, J. & Mittelbrunn, M.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yalcin, A., Telang, S., Clem, B. & Chesney, J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86, 174–179 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assis, P. A., Allen, R. M., Schaller, M. A., Kunkel, S. L. & Bermick, J. R. Metabolic reprogramming and dysregulated IL-17 production impairs CD4 T cell function post sepsis. iScience 27, 110114 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reina-Campos, M., Scharping, N. E. & Goldrath, A. W. CD8(+) T cell metabolism in infection and cancer. Nat. Rev. Immunol. 21, 718–738 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kempkes, R. W. M., Joosten, I., Koenen, H. & He, X. Metabolic pathways involved in regulatory T cell functionality. Front Immunol 10, 2839 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McBride, M. A. et al. The metabolic basis of immune dysfunction following sepsis and trauma. Front Immunol 11, 1043 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 21, 347 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vincent, J. L., Quintairos, E. S. A., Couto, L. Jr. & Taccone, F. S. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit. Care 20, 257 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, B. & Pearce, E. L. Amino assets: how amino acids support immunity. Cell Metab 32, 154–175 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R. & Newsholme, P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10, 1–31 (2018).

    Article 

    Google Scholar
     

  • Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallace, C. & Keast, D. Glutamine and macrophage function. Metabolism 41, 1016–1020 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stayer, K. et al. Exogenous arginine differentially regulates inflammatory cytokine and inducible nitric oxide synthase expression in macrophages. Immunohorizons 9, vlaf028 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wijnands, K. A., Castermans, T. M., Hommen, M. P., Meesters, D. M. & Poeze, M. Arginine and citrulline and the immune response in sepsis. Nutrients 7, 1426–1463 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garduno, A. & Martín-Loeches, I. Targeting sepsis: disease tolerance, immune resilience, and compartmentalized immunity. Biomedicines 12, 2420 (2024).

  • Zhang, T., Yu-Jing, L. & Ma, T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 14, 1029438 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front Immunol 14, 1323797 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. F., Vachharajani, V. T., Yoza, B. K. & McCall, C. E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287, 25758–25769 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCall, C. E. et al. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI Insight 3, 1–16 (2018).

    Article 

    Google Scholar
     

  • Tan, Z. et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082–6089 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest 125, 194–207 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Z. et al. The Pyruvate dehydrogenase complex in sepsis: metabolic regulation and targeted therapy. Front Nutr 8, 783164 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stacpoole, P. W. et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N. Engl. J. Med 327, 1564–1569 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. & Hoppe, T. Role of amino acid metabolism in mitochondrial homeostasis. Front Cell Dev. Biol 11, 1127618 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wasyluk, W. & Zwolak, A. Metabolic alterations in sepsis. J. Clin. Med. 10, 1–18 (2021).

    Article 

    Google Scholar
     

  • Pang, X., Zhang, P., Chen, X. & Liu, W. Ubiquitin-proteasome pathway in skeletal muscle atrophy. Front Physiol 14, 1289537 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, Z. N. et al. Amino acid metabolism in health and disease. Signal Transduct. Target Ther 8, 345 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, D. et al. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Crit. Care 28, 292 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredriksson, K. et al. Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsis-induced multiple organ failure. Am. J. Physiol. Endocrinol. Metab. 291, E1044–1050 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nedel, W., Deutschendorf, C. & Portela, L. V. C. Sepsis-induced mitochondrial dysfunction: a narrative review. World J. Crit. Care Med 12, 139–152 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nedel, W., Strogulski, N. R., Kopczynski, A. & Portela, L. V. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 12, 107 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomar, S. et al. Current insights into glutathione depletion in adult septic patients. Antioxidants (Basel) 14, 1–31 (2025).


    Google Scholar
     

  • Zhu, C. L. et al. Mechanism of mitophagy and its role in sepsis induced organ dysfunction: a review. Front Cell Dev. Biol 9, 664896 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adebayo, M., Singh, S., Singh, A. P. & Dasgupta, S. Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis. Faseb j 35, e21620 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heilig, R., Lee, J. & Tait, S. W. G. Mitochondrial DNA in cell death and inflammation. Biochem Soc. Trans. 51, 457–472 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muniz-Santos, R. et al. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 14, 1224335 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol. Immunol. 19, 384–408 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham, L. et al. Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation. Commun. Biol. 5, 1366 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, W. et al. Restoration of CPT1A-mediated fatty acid oxidation in mesothelial cells protects against peritoneal fibrosis. Theranostics 13, 4482–4496 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ming, S. et al. TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis. J. Clin. Invest. 135, 1–17 (2024).


    Google Scholar
     

  • Moreno, R. et al. The Sequential Organ Failure Assessment (SOFA) Score: has the time come for an update? Crit. Care 27, 15 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmerman, J. E., Kramer, A. A., McNair, D. S. & Malila, F. M. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit. Care Med. 34, 1297–1310 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Thorén, A. et al. The predictive power of the National Early Warning Score (NEWS) 2, as compared to NEWS, among patients assessed by a Rapid response team: A prospective multi-centre trial. Resusc Plus 9, 100191 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pool, R., Gomez, H. & Kellum, J. A. Mechanisms of organ dysfunction in sepsis. Crit. Care Clin. 34, 63–80 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, T. et al. Lactate’s impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 15, 1483400 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llibre, A., Kucuk, S., Gope, A., Certo, M. & Mauro, C. Lactate: a key regulator of the immune response. Immunity 58, 535–554 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbieri, L. et al. Lactate exposure shapes the metabolic and transcriptomic profile of CD8+ T cells. Front Immunol 14, 1101433 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Epigenetic modulation by lactylation in sepsis: linking metabolism to immune dysfunction. J. Inflamm. Res 18, 7357–7367 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, X. et al. Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front Immunol 12, 786666 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogers, R. S. et al. Circulating N-lactoyl-amino acids and N-formyl-methionine reflect mitochondrial dysfunction and predict mortality in septic shock. Metabolomics 20, 36 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banesh, S. & Trivedi, V. Therapeutic potentials of scavenger receptor CD36 mediated innate immune responses against infectious and non-infectious diseases. Curr. Drug Discov. Technol. 17, 299–317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanchet, C., Jouvion, G., Fitting, C., Cavaillon, J. M. & Adib-Conquy, M. Protective or deleterious role of scavenger receptors SR-A and CD36 on host resistance to Staphylococcus aureus depends on the site of infection. PLoS One 9, e87927 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev. Nutr. 34, 281–303 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandhirajan, A., Roychowdhury, S. & Vachharajani, V. Sirtuins and sepsis: cross talk between redox and epigenetic pathways. Antioxidants (Basel) 11, 1–18 (2021).


    Google Scholar
     

  • Li, Y. et al. Hepatocyte CD36 modulates UBQLN1-mediated proteasomal degradation of autophagic SNARE proteins contributing to septic liver injury. Autophagy 19, 2504–2519 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, C. M. & Stahl, A. SLC27 fatty acid transport proteins. Mol. Asp. Med 34, 516–528 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kemp, F., Braverman, E. L. & Byersdorfer, C. A. Fatty acid oxidation in immune function. Front Immunol 15, 1420336 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Intracellular lipid accumulation drives the differentiation of decidual polymorphonuclear myeloid-derived suppressor cells via arachidonic acid metabolism. Front Immunol 13, 868669 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gudgeon, N. et al. Uptake of long-chain fatty acids from the bone marrow suppresses CD8+ T-cell metabolism and function in multiple myeloma. Blood Adv 7, 6035–6047 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, N. et al. Fatty acid binding protein 2 (FATP2/SLC27A2) blockade with Lipofermata elicits dual effects on inflammatory responses in human monocytes and macrophages. Immunol. Lett. 277, 107092 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Tao, L., Zhou, Y., Wu, L. & Liu, J. Comprehensive analysis of sialylation-related genes and construct the prognostic model in sepsis. Sci. Rep. 14, 18110 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee, S. K., Thurlow, L. R., Kannan, K. & Richardson, A. R. Glucose transporter 1 is essential for the resolution of methicillin-resistant S. aureus skin and soft tissue infections. Cell Rep 43, 114486 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laufenberg, L. J., Pruznak, A. M., Navaratnarajah, M. & Lang, C. H. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids 46, 2787–2798 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinclair, L. V., Neyens, D., Ramsay, G., Taylor, P. M. & Cantrell, D. A. Single cell analysis of kynurenine and System L amino acid transport in T cells. Nat. Commun. 9, 1981 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, W. et al. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis 8, e2655 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone, T. W. & Williams, R. O. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharm. Sci. 44, 442–456 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W., Guo, W., Li, Y. & Chen, M. Integrative analysis of metabolomics and transcriptomics to uncover biomarkers in sepsis. Sci. Rep. 14, 9676 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. et al. Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux. Nat. Commun. 14, 4883 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185 e4121 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahl, P. J. et al. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun. Biol. 3, 305 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argüello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab 32, 1063–1075.e1067 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stier, M. T. et al. Metabolic adaptations rewire CD4 T cells in a subset-specific manner in human critical illness with and without sepsis. bioRxiv, 2025.2001.2027.635146 (2025).

  • Voss, K. et al. A guide to interrogating immunometabolism. Nat. Rev. Immunol. 21, 637–652 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oeschger, T., McCloskey, D., Kopparthy, V., Singh, A. & Erickson, D. Point of care technologies for sepsis diagnosis and treatment. Lab Chip 19, 728–737 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wardi, G. et al. Demystifying lactate in the emergency department. Ann. Emerg. Med 75, 287–298 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mainali, R. et al. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. Elife 10, e64611 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desousa, B. R. et al. Calculation of ATP production rates using the Seahorse XF Analyzer. EMBO Rep 24, e56380 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deulkar, P., Singam, A., Mudiganti, V. & Jain, A. Lactate monitoring in intensive care: a comprehensive review of its utility and interpretation. Cureus 16, e66356 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Lactate and lactylation in sepsis: a comprehensive review. J. Inflamm. Res. 17, 4405–4417 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jennaro, T. S. et al. Serum levels of acylcarnitines and amino acids are associated with liberation from organ support in patients with septic shock. J. Clin. Med. 11, 1–13 (2022).

    Article 

    Google Scholar
     

  • Van Wyngene, L. et al. Hepatic PPARα function and lipid metabolic pathways are dysregulated in polymicrobial sepsis. EMBO Mol. Med. 12, e11319 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, K. P. et al. Increased plasma acetylcarnitine in sepsis is associated with multiple organ dysfunction and mortality: a multicenter cohort study. Crit. Care Med. 47, 210–218 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Created in BioRender. Henson, S. https://BioRender.com/91b03sy (2026).

  • Created in BioRender. Henson, S. https://BioRender.com/nrybifw (2026).