Angus, D. C. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851 (2013).
Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 395, 200–211 (2020).
Wiersinga, W. J., Leopold, S. J., Cranendonk, D. R. & van der Poll, T. Host innate immune responses to sepsis. Virulence 5, 36–44 (2014).
Van Wyngene, L., Vandewalle, J. & Libert, C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol. Med. 10, 1–18 (2018).
Willmann, K. & Moita, L. F. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 36, 927–946 (2024).
Cao, M., Wang, G. & Xie, J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov 9, 465 (2023).
Delano, M. J. & Ward, P. A. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 274, 330–353 (2016).
Wang, A., Luan, H. H. & Medzhitov, R. An evolutionary perspective on immunometabolism. Science 363, 1–8 (2019).
van der Poll, T., Shankar-Hari, M. & Wiersinga, W. J. The immunology of sepsis. Immunity 54, 2450–2464 (2021).
Hotchkiss, R. S., Monneret, G. & Payen, D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 13, 260–268 (2013).
Soto-Heredero, G. Glycolysis – a key player in the inflammatory response. Febs j 287, 3350–3369 (2020). Gómez de Las Heras, M. M., Gabandé-Rodríguez, E., Oller, J. & Mittelbrunn, M.
O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).
Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).
Yalcin, A., Telang, S., Clem, B. & Chesney, J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86, 174–179 (2009).
Assis, P. A., Allen, R. M., Schaller, M. A., Kunkel, S. L. & Bermick, J. R. Metabolic reprogramming and dysregulated IL-17 production impairs CD4 T cell function post sepsis. iScience 27, 110114 (2024).
Reina-Campos, M., Scharping, N. E. & Goldrath, A. W. CD8(+) T cell metabolism in infection and cancer. Nat. Rev. Immunol. 21, 718–738 (2021).
Kempkes, R. W. M., Joosten, I., Koenen, H. & He, X. Metabolic pathways involved in regulatory T cell functionality. Front Immunol 10, 2839 (2019).
McBride, M. A. et al. The metabolic basis of immune dysfunction following sepsis and trauma. Front Immunol 11, 1043 (2020).
Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).
Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 21, 347 (2015).
Vincent, J. L., Quintairos, E. S. A., Couto, L. Jr. & Taccone, F. S. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit. Care 20, 257 (2016).
Kelly, B. & Pearce, E. L. Amino assets: how amino acids support immunity. Cell Metab 32, 154–175 (2020).
Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R. & Newsholme, P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10, 1–31 (2018).
Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).
Wallace, C. & Keast, D. Glutamine and macrophage function. Metabolism 41, 1016–1020 (1992).
Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).
Stayer, K. et al. Exogenous arginine differentially regulates inflammatory cytokine and inducible nitric oxide synthase expression in macrophages. Immunohorizons 9, vlaf028 (2025).
Wijnands, K. A., Castermans, T. M., Hommen, M. P., Meesters, D. M. & Poeze, M. Arginine and citrulline and the immune response in sepsis. Nutrients 7, 1426–1463 (2015).
Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).
Garduno, A. & Martín-Loeches, I. Targeting sepsis: disease tolerance, immune resilience, and compartmentalized immunity. Biomedicines 12, 2420 (2024).
Zhang, T., Yu-Jing, L. & Ma, T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 14, 1029438 (2023).
Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).
Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).
Chen, Y. et al. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front Immunol 14, 1323797 (2023).
Liu, T. F., Vachharajani, V. T., Yoza, B. K. & McCall, C. E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287, 25758–25769 (2012).
McCall, C. E. et al. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI Insight 3, 1–16 (2018).
Tan, Z. et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082–6089 (2015).
Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest 125, 194–207 (2015).
Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).
Zeng, Z. et al. The Pyruvate dehydrogenase complex in sepsis: metabolic regulation and targeted therapy. Front Nutr 8, 783164 (2021).
Stacpoole, P. W. et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N. Engl. J. Med 327, 1564–1569 (1992).
Li, Q. & Hoppe, T. Role of amino acid metabolism in mitochondrial homeostasis. Front Cell Dev. Biol 11, 1127618 (2023).
Wasyluk, W. & Zwolak, A. Metabolic alterations in sepsis. J. Clin. Med. 10, 1–18 (2021).
Pang, X., Zhang, P., Chen, X. & Liu, W. Ubiquitin-proteasome pathway in skeletal muscle atrophy. Front Physiol 14, 1289537 (2023).
Ling, Z. N. et al. Amino acid metabolism in health and disease. Signal Transduct. Target Ther 8, 345 (2023).
Hu, D. et al. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Crit. Care 28, 292 (2024).
Fredriksson, K. et al. Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsis-induced multiple organ failure. Am. J. Physiol. Endocrinol. Metab. 291, E1044–1050 (2006).
Nedel, W., Deutschendorf, C. & Portela, L. V. C. Sepsis-induced mitochondrial dysfunction: a narrative review. World J. Crit. Care Med 12, 139–152 (2023).
Nedel, W., Strogulski, N. R., Kopczynski, A. & Portela, L. V. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 12, 107 (2024).
Gomar, S. et al. Current insights into glutathione depletion in adult septic patients. Antioxidants (Basel) 14, 1–31 (2025).
Zhu, C. L. et al. Mechanism of mitophagy and its role in sepsis induced organ dysfunction: a review. Front Cell Dev. Biol 9, 664896 (2021).
Adebayo, M., Singh, S., Singh, A. P. & Dasgupta, S. Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis. Faseb j 35, e21620 (2021).
Heilig, R., Lee, J. & Tait, S. W. G. Mitochondrial DNA in cell death and inflammation. Biochem Soc. Trans. 51, 457–472 (2023).
Muniz-Santos, R. et al. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 14, 1224335 (2023).
Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol. Immunol. 19, 384–408 (2022).
Pham, L. et al. Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation. Commun. Biol. 5, 1366 (2022).
Su, W. et al. Restoration of CPT1A-mediated fatty acid oxidation in mesothelial cells protects against peritoneal fibrosis. Theranostics 13, 4482–4496 (2023).
Ming, S. et al. TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis. J. Clin. Invest. 135, 1–17 (2024).
Moreno, R. et al. The Sequential Organ Failure Assessment (SOFA) Score: has the time come for an update? Crit. Care 27, 15 (2023).
Zimmerman, J. E., Kramer, A. A., McNair, D. S. & Malila, F. M. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit. Care Med. 34, 1297–1310 (2006).
Thorén, A. et al. The predictive power of the National Early Warning Score (NEWS) 2, as compared to NEWS, among patients assessed by a Rapid response team: A prospective multi-centre trial. Resusc Plus 9, 100191 (2022).
Pool, R., Gomez, H. & Kellum, J. A. Mechanisms of organ dysfunction in sepsis. Crit. Care Clin. 34, 63–80 (2018).
Zhang, T. et al. Lactate’s impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 15, 1483400 (2024).
Llibre, A., Kucuk, S., Gope, A., Certo, M. & Mauro, C. Lactate: a key regulator of the immune response. Immunity 58, 535–554 (2025).
Barbieri, L. et al. Lactate exposure shapes the metabolic and transcriptomic profile of CD8+ T cells. Front Immunol 14, 1101433 (2023).
Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).
Chen, Y. et al. Epigenetic modulation by lactylation in sepsis: linking metabolism to immune dysfunction. J. Inflamm. Res 18, 7357–7367 (2025).
Chu, X. et al. Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front Immunol 12, 786666 (2021).
Rogers, R. S. et al. Circulating N-lactoyl-amino acids and N-formyl-methionine reflect mitochondrial dysfunction and predict mortality in septic shock. Metabolomics 20, 36 (2024).
Banesh, S. & Trivedi, V. Therapeutic potentials of scavenger receptor CD36 mediated innate immune responses against infectious and non-infectious diseases. Curr. Drug Discov. Technol. 17, 299–317 (2020).
Blanchet, C., Jouvion, G., Fitting, C., Cavaillon, J. M. & Adib-Conquy, M. Protective or deleterious role of scavenger receptors SR-A and CD36 on host resistance to Staphylococcus aureus depends on the site of infection. PLoS One 9, e87927 (2014).
Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev. Nutr. 34, 281–303 (2014).
Gandhirajan, A., Roychowdhury, S. & Vachharajani, V. Sirtuins and sepsis: cross talk between redox and epigenetic pathways. Antioxidants (Basel) 11, 1–18 (2021).
Li, Y. et al. Hepatocyte CD36 modulates UBQLN1-mediated proteasomal degradation of autophagic SNARE proteins contributing to septic liver injury. Autophagy 19, 2504–2519 (2023).
Anderson, C. M. & Stahl, A. SLC27 fatty acid transport proteins. Mol. Asp. Med 34, 516–528 (2013).
Kemp, F., Braverman, E. L. & Byersdorfer, C. A. Fatty acid oxidation in immune function. Front Immunol 15, 1420336 (2024).
Wang, Q. et al. Intracellular lipid accumulation drives the differentiation of decidual polymorphonuclear myeloid-derived suppressor cells via arachidonic acid metabolism. Front Immunol 13, 868669 (2022).
Gudgeon, N. et al. Uptake of long-chain fatty acids from the bone marrow suppresses CD8+ T-cell metabolism and function in multiple myeloma. Blood Adv 7, 6035–6047 (2023).
Hahn, N. et al. Fatty acid binding protein 2 (FATP2/SLC27A2) blockade with Lipofermata elicits dual effects on inflammatory responses in human monocytes and macrophages. Immunol. Lett. 277, 107092 (2025).
Tao, L., Zhou, Y., Wu, L. & Liu, J. Comprehensive analysis of sialylation-related genes and construct the prognostic model in sepsis. Sci. Rep. 14, 18110 (2024).
Banerjee, S. K., Thurlow, L. R., Kannan, K. & Richardson, A. R. Glucose transporter 1 is essential for the resolution of methicillin-resistant S. aureus skin and soft tissue infections. Cell Rep 43, 114486 (2024).
Laufenberg, L. J., Pruznak, A. M., Navaratnarajah, M. & Lang, C. H. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids 46, 2787–2798 (2014).
Sinclair, L. V., Neyens, D., Ramsay, G., Taylor, P. M. & Cantrell, D. A. Single cell analysis of kynurenine and System L amino acid transport in T cells. Nat. Commun. 9, 1981 (2018).
Ren, W. et al. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis 8, e2655 (2017).
Stone, T. W. & Williams, R. O. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharm. Sci. 44, 442–456 (2023).
Chen, W., Guo, W., Li, Y. & Chen, M. Integrative analysis of metabolomics and transcriptomics to uncover biomarkers in sepsis. Sci. Rep. 14, 9676 (2024).
Huang, Y. et al. Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux. Nat. Commun. 14, 4883 (2023).
Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185 e4121 (2021).
Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2021).
Ahl, P. J. et al. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun. Biol. 3, 305 (2020).
Argüello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab 32, 1063–1075.e1067 (2020).
Stier, M. T. et al. Metabolic adaptations rewire CD4 T cells in a subset-specific manner in human critical illness with and without sepsis. bioRxiv, 2025.2001.2027.635146 (2025).
Voss, K. et al. A guide to interrogating immunometabolism. Nat. Rev. Immunol. 21, 637–652 (2021).
Oeschger, T., McCloskey, D., Kopparthy, V., Singh, A. & Erickson, D. Point of care technologies for sepsis diagnosis and treatment. Lab Chip 19, 728–737 (2019).
Wardi, G. et al. Demystifying lactate in the emergency department. Ann. Emerg. Med 75, 287–298 (2020).
Mainali, R. et al. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. Elife 10, e64611 (2021).
Desousa, B. R. et al. Calculation of ATP production rates using the Seahorse XF Analyzer. EMBO Rep 24, e56380 (2023).
Deulkar, P., Singam, A., Mudiganti, V. & Jain, A. Lactate monitoring in intensive care: a comprehensive review of its utility and interpretation. Cureus 16, e66356 (2024).
Liu, S. et al. Lactate and lactylation in sepsis: a comprehensive review. J. Inflamm. Res. 17, 4405–4417 (2024).
Jennaro, T. S. et al. Serum levels of acylcarnitines and amino acids are associated with liberation from organ support in patients with septic shock. J. Clin. Med. 11, 1–13 (2022).
Van Wyngene, L. et al. Hepatic PPARα function and lipid metabolic pathways are dysregulated in polymicrobial sepsis. EMBO Mol. Med. 12, e11319 (2020).
Chung, K. P. et al. Increased plasma acetylcarnitine in sepsis is associated with multiple organ dysfunction and mortality: a multicenter cohort study. Crit. Care Med. 47, 210–218 (2019).
Created in BioRender. Henson, S. https://BioRender.com/91b03sy (2026).
Created in BioRender. Henson, S. https://BioRender.com/nrybifw (2026).


















Leave a Reply