The ageing immune system as a driver of systemic ageing

The ageing immune system as a driver of systemic ageing

  • Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walford, R. L. The immunologic theory of aging. Gerontologist 4, 195–197 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Effros, R. B. Roy Walford and the immunologic theory of aging. Immun. Ageing 2, 7 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021). This article highlights a causal link between immune ageing and systemic ageing by utilizing an immune cell-specific DNA damage mouse model (Vav-iCre+/−;Ercc1−/fl).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020). This article demonstrates that mitochondria dysfunction in T cells has a critical role in driving multiple age-related pathologies, potentially through reduced NAD+ levels.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iborra-Pernichi, M. et al. Defective mitochondria remodelling in B cells leads to an aged immune response. Nat. Commun. 15, 2569 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal. Transduct. Target. Ther. 8, 200 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikolich-Žugich, J., Li, G., Uhrlaub, J. L., Renkema, K. R. & Smithey, M. J. Age-related changes in CD8 T cell homeostasis and immunity to infection. Semin. Immunol. 24, 356–364 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Single-cell immune aging clocks reveal inter-individual heterogeneity during infection and vaccination. Nat. Aging 5, 607–621 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, Y. et al. Comprehensive human proteome profiles across a 50-year lifespan reveal aging trajectories and signatures. Cell 188, 5763–5784.e26 (2025). This article provides a comprehensive overview and resource of proteome profiles across human organs during ageing.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, M. D. et al. Hematopoietic aging promotes cancer by fueling IL-1α-driven emergency myelopoiesis. Science 386, eadn0327 (2024). This article highlights how IL-1α-driven myelopoiesis contributes to the failure to control lung cancer progression with age.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rettkowski, J. et al. Modulation of bone marrow haematopoietic stem cell activity as a therapeutic strategy after myocardial infarction: a preclinical study. Nat. Cell Biol. 27, 591–604 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Reducing functionally defective old HSCs alleviates aging-related phenotypes in old recipient mice. Cell Res. 35, 45–58 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ross, J. B. et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 628, 162–170 (2024). This article identifies a CD150high HSC population that drives myeloid-biased output from bone marrow, compromising the quality of adaptive immune response in ageing.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morganti, C. & Ito, K. Mitochondrial contributions to hematopoietic stem cell aging. Int. J. Mol. Sci. 22, 11117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, K. et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319–327 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girotra, M. et al. Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. Nat. Aging 3, 1057–1066 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorshkind, K., Höfer, T., Montecino-Rodriguez, E., Pioli, P. D. & Rodewald, H. R. Do haematopoietic stem cells age? Nat. Rev. Immunol. 20, 196–202 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elias, H. K. et al. Kitlo hematopoietic stem cells exhibit distinct lymphoid-primed chromatin landscapes that enhance thymic reconstitution. Nat. Commun. 16, 6170 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, N. et al. Clusterin drives myeloid bias in aged hematopoietic stem cells by regulating mitochondrial function. Nat. Aging 5, 1510–1527 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell 187, 3690–3711.e19 (2024). This article reports the detrimental effect of DNMT3A-driven clonal haematopoiesis on periodontitis and demonstrates that rapapmycin can reverse periodontitis-associated pathologies.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garagnani, P. et al. Whole-genome sequencing analysis of semi-supercentenarians. eLife 10, e57849 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouzid, H. et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat. Med. 29, 1662–1670 (2023). This article describes a negative association between clonal haematopoiesis and Alzheimer disease, potentially mediated by alterations in the microglial pool.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matatall, K. A. et al. TET2-mutant myeloid cells mitigate Alzheimer’s disease progression via CNS infiltration and enhanced phagocytosis in mice. Cell Stem Cell 32, 1285–1298.e8 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapadia, C. D. et al. Clonal dynamics and somatic evolution of haematopoiesis in mouse. Nature 641, 681–689 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784.e6 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toghani, D. et al. Niche-derived Semaphorin 4A safeguards functional identity of myeloid-biased hematopoietic stem cells. Nat. Aging 5, 558–575 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pioli, P. D., Casero, D., Montecino-Rodriguez, E., Morrison, S. L. & Dorshkind, K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51, 351–366.e6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, S., Georgiev, P., Ringel, A. E., Sharpe, A. H. & Haigis, M. C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 35, 36–55 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frasca, D., Diaz, A., Romero, M., Garcia, D. & Blomberg, B. B. B cell immunosenescence. Annu. Rev. Cell Dev. Biol. 36, 551–574 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valentino, T. R. et al. The role of autoantibodies in bridging obesity, aging, and immunosenescence. Immun. Ageing 21, 85 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315–340 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Aging-associated HELIOS deficiency in naive CD4. Nat. Immunol. 24, 96–109 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro, J. P. et al. Age-associated clonal B cells drive B cell lymphoma in mice. Nat. Aging 4, 1403–1417 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. W. et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature 611, 358–364 (2022). This article demonstrates that the age-related decline in immunosurveilance promotes the accumulation of senescent cells and highlights the therapeutic potential of immunotherapy to restore immune function and alleviate systemic ageing.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahlquist, K. J. V. et al. PD1 blockade improves survival and CD8. Nat. Aging 4, 915–925 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zukowski, E. et al. STAT3 modulates CD4. Aging Cell 22, e13996 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callender, L. A. et al. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell 19, e13067 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. PREX1 improves homeostatic proliferation to maintain a naive CD4+ T cell compartment in older age. JCI Insight 9, e172848 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, J. et al. CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nat. Aging 3, 600–616 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Headley, C. A. et al. Extracellular delivery of functional mitochondria rescues the dysfunction of CD4. Adv. Sci. 11, e2303664 (2024).

    Article 

    Google Scholar
     

  • Quinn, K. M. et al. Age-related decline in primary CD8. Cell Rep. 23, 3512–3524 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinn, K. M., Vicencio, D. M. & La Gruta, N. L. The paradox of aging: aging-related shifts in T cell function and metabolism. Semin. Immunol. 70, 101834 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terekhova, M. et al. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C. Immunity 57, 188–192 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan, F. et al. GZMK-expressing CD8. Nature 638, 490–498 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, S. et al. Age-related decline in CD8. Nat. Aging 4, 1828–1844 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camell, C. D. et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 30, 1024–1039.e6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souyris, M. et al. escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Luo, Y. et al. Single-cell genomics identifies distinct B1 cell developmental pathways and reveals aging-related changes in the B-cell receptor repertoire. Cell Biosci. 12, 57 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marín-Aguilar, F. et al. NLRP3 inflammasome inhibition by MCC950 in aged mice improves health via enhanced autophagy and PPARα activity. J. Gerontol. A Biol. Sci. Med. Sci 75, 1457–1464 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Oishi, Y. & Manabe, I. Macrophages in age-related chronic inflammatory diseases. npj Aging Mech. Dis. 2, 16018 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millet, A., Ledo, J. H. & Tavazoie, S. F. An exhausted-like microglial population accumulates in aged and APOE4 genotype Alzheimer’s brains. Immunity 57, 153–170.e6 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H. et al. Defective efferocytosis by aged macrophages promotes STING signaling mediated inflammatory liver injury. Cell Death Discov. 9, 236 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blacher, E. et al. Aging disrupts circadian gene regulation and function in macrophages. Nat. Immunol. 23, 229–236 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryu, S. et al. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 55, 1609–1626.e7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J. et al. Aged bone marrow macrophages drive systemic aging and age-related dysfunction via extracellular vesicle-mediated induction of paracrine senescence. Nat. Aging 4, 1562–1581 (2024). This article introduces a critical concept of paracrine senescence driven by aged macrophages, highlighting their contribution to systemic ageing.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogueira-Recalde, U. et al. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 45, 588–605 (2019). This article establishes the concept of paracrine senescence driven by immunoglobulin, contributing to systemic ageing.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, S. et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 187, 7025–7044.e34 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sawaki, D. et al. Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction. JCI Insight 8, e145811 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawaki, D. et al. Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production. Circulation 138, 809–822 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. et al. Type 2 cytokine signaling in macrophages protects from cellular senescence and organismal aging. Immunity 57, 513–527.e6 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Avondt, K. et al. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 314, 357–375 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Barkaway, A. et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity 54, 1494–1510.e7 (2021). This article highlights that neutrophils, which are relatively understudied innate immune cells in the context of ageing, drive remote tissue inflammation via their re-entry into the circulation.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, R. J. et al. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. Nat. Aging 1, 715–733 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brauning, A. et al. Aging of the immune system: focus on natural killer cells phenotype and functions. Cells 11, 1017 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shehata, H. M., Hoebe, K. & Chougnet, C. A. The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 14, 191–199 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida-Oliveira, A. et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum. Immunol. 72, 319–329 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gounder, S. S. et al. Effect of aging on NK cell population and their proliferation at ex vivo culture condition. Anal. Cell Pathol. 2018, 7871814 (2018).

    Article 

    Google Scholar
     

  • D’Souza, S. S. et al. Compartmentalized effects of aging on group 2 innate lymphoid cell development and function. Aging Cell 18, e13019 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldberg, E. L. et al. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab. 33, 2277–2287.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fung, I. T. H. et al. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J. Exp. Med. 217, e20190915 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gray, J. I. et al. Human γδ T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci. Immunol. 9, eadn3954 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruno, M. E. C. et al. Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation. Geroscience 44, 1761–1778 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faust, H. J. et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J. Clin. Invest. 130, 5493–5507 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee, S. et al. Mechanisms of γδ T cell accumulation in visceral adipose tissue with aging. Front. Aging 4, 1258836 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kroemer, G. et al. From geroscience to precision geromedicine: understanding and managing aging. Cell 188, 2043–2062 (2025). Recent developments in geroscience are discussed, and extracellular matrix alterations are introduced as a new hallmark of ageing in this paper.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pieren, D. K. J. et al. Compromised DNA repair promotes the accumulation of regulatory T cells with an aging-related phenotype and responsiveness. Front. Aging 2, 667193 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossiello, F., Jurk, D., Passos, J. F. & d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najarro, K. et al. Telomere length as an indicator of the robustness of B- and T-cell response to influenza in older adults. J. Infect. Dis. 212, 1261–1269 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, Y. et al. Telomere dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 inflammasome through the PGC-1α/TNFAIP3 axis. Cell Rep. 22, 3493–3506 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vukmanovic-Stejic, M. et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 116, 2423–2433 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanna, A. et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat. Cell Biol. 24, 1461–1474 (2022). This article discusses the potential implications of impaired intercellular telomere transfer in driving immune and systemic ageing.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amorim, J. A. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243–258 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zong, Y. et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal. Transduct. Target. Ther. 9, 124 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wculek, S. K. et al. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity 56, 516–530.e9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seegren, P. V. et al. Reduced mitochondrial calcium uptake in macrophages is a major driver of inflammaging. Nat. Aging 3, 796–812 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal. Transduct. Target. Ther. 7, 374 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kusters, C. D. J. & Horvath, S. Quantification of epigenetic aging in public health. Annu. Rev. Public Health 46, 91–110 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Márquez, E. J. et al. Sexual-dimorphism in human immune system aging. Nat. Commun. 11, 751 (2020). This article highlights age-related epigenetic alterations in immune cells by characterizing peripheral blood mononuclear cells from 172 individuals and provides a resource to explore the impact of age and sex on immune phenotype.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shchukina, I. et al. Enhanced epigenetic profiling of classical human monocytes reveals a specific signature of healthy aging in the DNA methylome. Nat. Aging 1, 124–141 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horitani, K. et al. Disruption of the Uty epigenetic regulator locus in hematopoietic cells phenocopies the profibrotic attributes of Y chromosome loss in heart failure. Nat. Cardiovasc. Res. 3, 343–355 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karakaslar, E. O. et al. Transcriptional activation of Jun and Fos members of the AP-1 complex is a conserved signature of immune aging that contributes to inflammaging. Aging Cell 22, e13792 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang, I. H. et al. GDF3 promotes adipose tissue macrophage-mediated inflammation via altered chromatin accessibility during aging. Nat. Aging 6, 127–142 (2026).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moss, C. E. et al. Aging-related defects in macrophage function are driven by MYC and USF1 transcriptional programs. Cell Rep. 43, 114073 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arata, Y. et al. Defective induction of the proteasome associated with T-cell receptor signaling underlies T-cell senescence. Genes Cell 24, 801–813 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Aman, Y. et al. Autophagy in healthy aging and disease. Nat. Aging 1, 634–650 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol. Cell 76, 110–125.e9 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsaleh, G. et al. Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. eLife 9, e57950 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dellorusso, P. V. et al. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells. Cell Stem Cell 31, 1020–1037.e9 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Consortium, T. M. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018). This article provides a comprehensive single-cell level resource detailling age-related changes in immune cells across 20 mouse organs.

    Article 

    Google Scholar
     

  • Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat. Immunol. 26, 308–322 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav, S., Deepika & Maurya, P. K. A systematic review of red blood cells biomarkers in human aging. J. Gerontol. A Biol. Sci. Med. Sci. 79, glae004 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ningtyas, D. C. et al. Platelets mediate the clearance of senescent red blood cells by forming prophagocytic platelet-cell complexes. Blood 143, 535–547 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sage, P. T., Tan, C. L., Freeman, G. J., Haigis, M. & Sharpe, A. H. Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging. Cell Rep. 12, 163–171 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stebegg, M. et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. eLife 9, e52473 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. L. et al. B cell-intrinsic changes with age do not impact antibody-secreting cell formation but delay B cell participation in the germinal centre reaction. Aging Cell 21, e13692 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou, M. Y., Zhang, H., Tan, P. C., Zhou, S. B. & Li, Q. F. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 13, 300 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carey, A. et al. B-cell interleukin 1 receptor 1 (IL1R1) modulates the female adipose tissue immune microenvironment during aging. J. Leukoc. Biol. 117, qiae219 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carey, A. et al. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep. 43, 113967 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L. et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 36, 793–807.e5 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD. Nat. Metab. 2, 1284–1304 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Covarrubias, A. J. et al. Senescent cells promote tissue NAD. Nat. Metab. 2, 1265–1283 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalathookunnel Antony, A., Lian, Z. & Wu, H. T cells in adipose tissue in aging. Front. Immunol. 9, 2945 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brigger, D. et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat. Metab. 2, 688–702 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, X. et al. Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging. Nat. Commun. 14, 3208 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stahl, E. C. et al. Inflammation and ectopic fat deposition in the aging murine liver is influenced by CCR2. Am. J. Pathol. 190, 372–387 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lagnado, A. et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 40, e106048 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, K. et al. Aging promotes metabolic dysfunction-associated steatotic liver disease by inducing ferroptotic stress. Nat. Aging 4, 949–968 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solá, P. et al. Targeting lymphoid-derived IL-17 signaling to delay skin aging. Nat. Aging 3, 688–704 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, J. et al. Age-associated senescent – T cell signaling promotes type 3 immunity that inhibits the biomaterial regenerative response. Adv. Mater. 36, e2310476 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194–208.e18 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gulen, M. F. et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023). This article demonstrates the potential of immunotheraphy through blockade of inflammatory pathways to mitigate age-related pathologies.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, S. et al. Microglia undergo sex-dimorphic transcriptional and metabolic rewiring during aging. J. Neuroinflammation 21, 150 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance. Nat. Commun. 13, 5671 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, L. et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 11, 2488 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zenaro, E. et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gullotta, G. S. et al. Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat. Immunol. 24, 925–940 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Fuente, A. G. et al. Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination. Nat. Commun. 15, 1870 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, W. N. et al. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 24, 61–73 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farhat, A. et al. An aging bone marrow exacerbates lung fibrosis by fueling profibrotic macrophage persistence. Sci. Immunol. 10, eadk5041 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McQuattie-Pimentel, A. C. et al. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. J. Clin. Invest. 131, e140299 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 1261–1275.e6 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasa, S. M. M. et al. Inflammaging is driven by upregulation of innate immune receptors and systemic interferon signaling and is ameliorated by dietary restriction. Cell Rep. 39, 111017 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monzó, C. et al. Dietary restriction mitigates the age-associated decline in mouse B cell receptor repertoire diversity. Cell Rep. 42, 112722 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, S. et al. Long-term mid-onset dietary restriction rejuvenates hematopoietic stem cells and improves regeneration capacity of total bone marrow from aged mice. Aging Cell 19, e13241 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papp, G. et al. Regular exercise may restore certain age-related alterations of adaptive immunity and rebalance immune regulation. Front. Immunol. 12, 639308 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Francesco, A. et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 634, 684–692 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraus, W. E. et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 7, 673–683 (2019). This article describes a randomized calorie restriction clinical trial that served as the basis for identifying multiple molecular mechanisms governing healthspan.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spadaro, O. et al. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671–677 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu, S. et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. eLife 10, e66522 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldberg, E. L. et al. β-Hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 18, 2077–2087 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, A. H. & Dixit, V. D. Dietary regulation of immunity. Immunity 53, 510–523 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557.e8 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conway, J. et al. Age-related loss of intestinal barrier integrity plays an integral role in thymic involution and T cell ageing. Aging Cell 24, e14401 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodogai, M. et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 10, eaat4271 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020). This article demonstrates that immunotheraphy using CAR T cells to target uPAR-expressing senescent cells can mitigate age-related pathologies.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aging 7, 336–349 (2024).

    Article 

    Google Scholar
     

  • Iltis, C. et al. A ganglioside-based immune checkpoint enables senescent cells to evade immunosurveillance during aging. Nat. Aging 5, 219–236 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. W. & Nakanishi, M. Immune surveillance of senescence: potential application to age-related diseases. Trends Cell Biol. 35, 248–257 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-X. Aging 9, 955–963 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018). This article demonstrates the potential of senotherapeutics approaches to improve immune function and extend healthspan.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camell, C. D. et al. Senolytics reduce coronavirus-related mortality in old mice. Science 373, eabe4832 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farr, J. N. et al. Local senolysis in aged mice only partially replicates the benefits of systemic senolysis. J. Clin. Invest. 133, e162519 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e2 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. H. et al. Chemically induced reprogramming to reverse cellular aging. Aging 15, 5966–5989 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Invest. 123, 958–965 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duggal, N. A. Reversing the immune ageing clock: lifestyle modifications and pharmacological interventions. Biogerontology 19, 481–496 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frisch, B. J. et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B. JCI Insight 5, e124213 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutherland, T. E., Dyer, D. P. & Allen, J. E. The extracellular matrix and the immune system: a mutually dependent relationship. Science 379, eabp8964 (2023). This article discusses the reciprocal interactions between the extracellular matrix and the immune system, highlighting their potential implications in immune and systemic ageing.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harper, E. I. & Weeraratna, A. T. A wrinkle in TIME: how changes in the aging ECM drive the remodeling of the tumor immune microenvironment. Cancer Discov. 13, 1973–1981 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gubbels Bupp, M. R., Potluri, T., Fink, A. L. & Klein, S. L. The confluence of sex hormones and aging on immunity. Front. Immunol. 9, 1269 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fairweather, D., Beetler, D. J., McCabe, E. J. & Lieberman, S. M. Mechanisms underlying sex differences in autoimmunity. J. Clin. Invest. 134, e180076 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn, S. E., Perry, W. A. & Klein, S. L. Mechanisms and consequences of sex differences in immune responses. Nat. Rev. Nephrol. 20, 37–55 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y., Liu, Q., Goronzy, J. J. & Weyand, C. M. Immune aging — a mechanism in autoimmune disease. Semin. Immunol. 69, 101814 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q., Zheng, Y., Goronzy, J. J. & Weyand, C. M. T cell aging as a risk factor for autoimmunity. J. Autoimmun. 137, 102947 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagen, S. H. et al. Heterogeneous escape from X chromosome inactivation results in sex differences in type I IFN responses at the single human pDC level. Cell Rep. 33, 108485 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdulai-Saiku, S. et al. The maternal X chromosome affects cognition and brain ageing in female mice. Nature 638, 152–159 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arai, Y. et al. Hematopoietic loss of Y chromosome activates immune checkpoints and contributes to impaired senescent cell clearance and renal disease. Sci. Transl. Med. 17, eadv4071 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landry, D. A. et al. Metformin prevents age-associated ovarian fibrosis by modulating the immune landscape in female mice. Sci. Adv. 8, eabq1475 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Single-cell analysis reveals alternations between the aged and young mice prostates. Biomark Res. 12, 117 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benedusi, V. et al. Ovariectomy shortens the life span of female mice. Oncotarget 6, 10801–10811 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar