Two codes of RNA editing by deamination in human diseases

Two codes of RNA editing by deamination in human diseases

  • Benne, R. et al. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46, 819–826 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker, A. R. & Slack, F. J. ADAR1 and its implications in cancer development and treatment. Trends Genet. 38, 821–830 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfaller, C. K., George, C. X. & Samuel, C. E. Adenosine deaminases acting on RNA (ADARs) and viral infections. Annu. Rev. Virol 8, 239–264 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakahama, T. et al. ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Rep. 19, https://doi.org/10.15252/embr.201846303 (2018).

  • XuFeng, R. et al. ADAR1 is required for hematopoietic progenitor cell survival via RNA editing. Proc. Natl Acad. Sci. USA 106, 17763–17768 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wales-McGrath, B., Mercer, H. & Piontkivska, H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 24, 685 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behm, M., Wahlstedt, H., Widmark, A., Eriksson, M. & Öhman, M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J. Cell Sci. 130, 745–753 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohlson, J., Pedersen J. S., Haussler, D. & Ohman, M. Editing modifies the GABAA receptor subunit α3. RNA 13, 698–703 (2007).

  • Gan, Z. et al. RNA editing by ADAR2 is metabolically regulated in pancreatic islets and beta-cells. J. Biol. Chem. 281, 33386–33394 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabay, O. et al. Landscape of adenosine-to-inosine RNA recoding across human tissues. Nat. Commun. 13, 1184 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Addabbo, P. et al. REDIportal: toward an integrated view of the A-to-I editing. Nucleic Acids Res 53, D233–D242 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, L. et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28, 515–528 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell, L. M. et al. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50, 831–840 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Averna, M., Seip, R., Mankowitz, K. & Schonfeld, G. Postprandial lipemia in subjects with hypobetalipoproteinemia and a single intestinal allele for apoB-48. J. Lipid Res. 34, 1957–1967 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navaratnam, N. et al. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J. Biol. Chem 268, 20709–20712 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teng, B., Burant, C. F. & Davidson, N. O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pecori, R., Di Giorgio, S., Paulo Lorenzo, J. & Nina Papavasiliou, F. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat. Rev. Genet. 23, 505–518 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H. Q. et al. Profiling the RNA editomes of wild-type C. elegans and ADAR mutants. Genome Research 25, 66–75 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • St Laurent, G. et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nature structural & molecular biology 20, 1333–1339 (2013).

    Article 

    Google Scholar
     

  • Buchumenski, I. et al. Systematic identification of A-to-I RNA editing in zebrafish development and adult organs. Nucleic Acids Res. 49, 4325–4337 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. A. et al. Deep transcriptome profiling reveals limited conservation of A-to-I RNA editing in Xenopus. BMC Biology 21, https://doi.org/10.1186/s12915-023-01756-2 (2023).

  • Sommer, B., Köhler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Licht, K. et al. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Research 29, 1453–1463 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiran, A. & Baranov, P. V. DARNED: a DAtabase of RNa EDiting in humans. Bioinformatics 26, 1772–1776 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramaswami, G. & Li, J. B. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42, D109–D113 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basilio, C., Wahba, A. J., Lengyel, P., Speyer, J. F. & Ochoa, S. Synthetic polynucleotides and the amino acid code. V. Proc. Natl Acad. Sci. USA 48, 613–616 (1962).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bass, B. L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polson, A. G., Crain, P. F., Pomerantz, S. C., McCloskey, J. A. & Bass, B. L. The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography-mass spectrometry analysis. Biochemistry 30, 11507–11514 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 13, 13–21 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X., Zou, Q., Yao, L. & Yang, X. Survey of the binding preferences of RNA-binding proteins to RNA editing events. Genome Biology 23, 169 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendoza, H. G. & Beal, P. A. Structural and functional effects of inosine modification in mRNA. RNA 30, 512–520 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, D. J., Rice, J. L., Yanker, D. M. & Znosko, B. M. Nearest neighbor parameters for inosine x uridine pairs in RNA duplexes. Biochemistry 46, 4625–4634 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright, D. J., Force, C. R. & Znosko, B. M. Stability of RNA duplexes containing inosine·cytosine pairs. Nucleic Acids Res 46, 12099–12108 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, F. V. & Ramakrishnan, V. Structure of a purine–purine wobble base pair in the decoding center of the ribosome. Nat. Struct. Mol. Biol. 11, 1251–1252 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. Y., Reddy, K., Vangaveti, S. & Sheng, J. Inosine-induced base pairing diversity during reverse transcription. ACS Chem. Biol. 19, 348–356 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Licht, K. et al. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 47, 3–14 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bass, B. & Weintraub, H. A developmentally regulated activity that unwinds RNA duplexes. Cell 48, 607–613 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, R. W., Smith, J. E., Cooperman B. S. & Nishikura K. A. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Nat. Acad. Sci. USA 86, 2647−2651 (1989).

  • Cristalli, G. et al. Adenosine deaminase: functional implications and different classes of inhibitors. Med. Res. Rev. 21, 105–128 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maas, S., Gerber, A. P. & Rich, A. Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc. Natl Acad. Sci. USA 96, 8895–8900 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerber, A. P. & Keller, W. An Adenosine Deaminase that Generates Inosine at the Wobble Position of tRNAs. Science 286, 1146–1149 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snyder, E., Chukrallah, L., Seltzer, K., Goodwin, L. & Braun, R. E. ADAD1 and ADAD2, testis-specific adenosine deaminase domain-containing proteins, are required for male fertility. Sci. Rep. 10, 11536 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolce, L. G. et al. Structural basis for sequence-independent substrate selection by eukaryotic wobble base tRNA deaminase ADAT2/3. Nat. Commun. 13, https://doi.org/10.1038/s41467-022-34441-z (2022).

  • McKee, A. E. et al. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev Biol. 5, https://doi.org/10.1186/1471-213X-5-14 (2005).

  • Valente, L. & Nishikura, K. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem 282, 16054–16061 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryter, J. M. & Schultz, S. C. Molecular basis of double-stranded RNA–protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 17, 7505–7513 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mboukou, A. et al. Dimerization of ADAR1 modulates site-specificity of RNA editing. Nat. Commun. 15, 10051 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stefl, R. et al. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143, 225–237 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levanon, E. Y. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Research 33, 1162–1168 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. X. et al. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6, 755–767 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melcher, T. et al. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem. 271, 31795–31798 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maas, S. & Gommans, W. M. Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Research 37, 5822–5829 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, C. X. & Samuel, C. E. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl Acad. Sci. USA 96, 4621–4626 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agranat, L., Raitskin, O., Sperling, J. & Sperling, R. The editing enzyme ADAR1 and the mRNA surveillance protein hUpf1 interact in the cell nucleus. Proc. Natl Acad. Sci. USA 105, 5028–5033 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koeris, M. Modulation of ADAR1 editing activity by Z-RNA in vitro. Nucleic Acids Res 33, 5362–5370 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Athanasiadis, A. et al. The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J Mol. Biol. 351, 496–507 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herbert, A. The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res 26, 3486–3493 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulsen, H., Nilsson, J., Damgaard, C. K., Egebjerg, J. & Kjems, J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell Biol. 21, 7862–7871 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nichols, P. J. et al. Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions. Nat. Commun. 12, https://doi.org/10.1038/s41467-021-21039-0 (2021).

  • Small, I. D. et al. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 101, https://doi.org/10.1111/tpj.14578 (2020).

  • Rosenberg, B. R., Hamilton, C. E., Mwangi, M. M., Dewell, S. & Papavasiliou, F. N. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat. Struct. Mol. Biol. 18, 230–236 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, T. et al. Canonical A-to-I and C-to-U RNA editing is enriched at 3′UTRs and microRNA target sites in multiple mouse tissues. PLoS ONE 7, e33720 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rayon-Estrada, V. et al. Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function. Proc. Natl Acad. Sci. USA 114, 13296–13301 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, S. et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat. Commun. 6, 6881 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonzino, A. et al. Unraveling C-to-U RNA editing events from direct RNA sequencing. RNA Biol 21, 113–126 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Serra, M. J., Lyttle, M. H., Axenson, T. J., Schadt, C. A. & Turner, D. H. RNA hairpin loop stability depends on closing base pair. Nucleic Acids Res 21, 3845–3849 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trikha, J. Crystal structure of a 14 bp RNA duplex with non-symmetrical tandem GxU wobble base pairs. Nucleic Acids Res. 27, 1728–1739 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladner, J. E. et al. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc. Natl Acad. Sci. USA 72, 4414–4418 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holley, R. W. et al. Structure of a Ribonucleic Acid. Science 147, 1462–1465 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quigley, G. J. & Rich, A. Structural Domains of Transfer RNA Molecules. Science 194, 796–806 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirano, K., Min, J., Funahashi, T., Baunoch, D. A. & Davidson, N. O. Characterization of the human apobec-1 gene: expression in gastrointestinal tissues determined by alternative splicing with production of a novel truncated peptide. J. Lipid Res. 38, 847–859 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demontis, S. et al. Isolation and characterization of the gene coding for human cytidine deaminase. Biochim. Biophys. Acta 1443, 323–333 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kühn, K., Bertling, W. M. & Emmrich, F. Cloning of a functional cDNA for human cytidine deaminase (CDD) and its use as a marker of monocyte/macrophage differentiation. Biochem. Biophys. Res. Commun. 190, 1–7 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness. Sci. Rep. 12, 14972 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdouni, H. S. et al. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID. Mol. Immunol. 93, 94–106 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marino, D. et al. APOBEC4 enhances the replication of HIV-1. PLoS ONE 11, e0155422 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan, A., Iyer, L. M., Holland, S. J., Boehm, T. & Aravind, L. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc. Natl Acad. Sci. USA 115, 3201 (2018).

    Article 

    Google Scholar
     

  • Liu, M. C. et al. AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-04273-x (2018).

  • Ito, J., Gifford, R. J. & Sato, K. Retroviruses drive the rapid evolution of mammalian APOBEC3 genes. Proc. Natl Acad. Sci. 117, 610–618, https://doi.org/10.1073/pnas.1914183116 (2020).

  • Conticello, S. G., Thomas, C. J., Petersen-Mahrt, S. K. & Neuberger, M. S. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Molecular Biology and Evolution 22, 367–377 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salter, J. D. & Smith, H. C. Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends Biochem. Sci. 43, 606–622 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolfe, A. D., Li, S., Goedderz, C. & Chen, X. S. The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. NAR Cancer 2, zcaa027 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta, A., Kinter, M. T., Sherman, N. E. & Driscoll, D. M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).

    CAS 

    Google Scholar
     

  • Fossat, N. et al. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47. EMBO Rep 15, 903–910 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Identification of RBM46 as a novel APOBEC1 cofactor for C-to-U RNA-editing activity. J. Mol. Biol. 435, 168333 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chester, A. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J 22, 3971–3982 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byeon, I.-J. L. et al. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat. Commun. 4, 1890 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kouno, T. et al. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat. Commun. 8, https://doi.org/10.1038/ncomms15024 (2017).

  • Tang, G. et al. Creating RNA specific C-to-U editase from APOBEC3A by separation of its activities on DNA and RNA substrates. ACS Synth. Biol. 10, 1106–1115 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chelico, L., Pham, P., Calabrese, P. & Goodman, M. F. APOBEC3G DNA deaminase acts processively 3′ -> 5′ on single-stranded DNA. Nat. Struct. Mol. Biol. 13, 392–399 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukuda, H. et al. Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association. Frontiers in Cellular and Infection Microbiology 9, 129 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, H., Kim, K., Li, S., Pacheco, J. & Chen, X. S. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat. Commun. 13, 7498 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, R. P., Presnyak, V., Wedekind, J. E. & Smith, H. C. Nuclear exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J. Biol. Chem. 283, 7320–7327 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, B. et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152, 276–289 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Reuver, R. et al. ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep 36, 109500 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, S. et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172, 797–810 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. et al. ADAR1 Zα domain P195A mutation activates the MDA5-dependent RNA-sensing signaling pathway in brain without decreasing overall RNA editing. Cell Rep 42, 112733 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakahama, T. et al. Mutations in the adenosine deaminase ADAR1 that prevent endogenous Z-RNA binding induce Aicardi–Goutières-syndrome-like encephalopathy. Immunity 54, 1976–1988.e7 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pestal, K. et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43, 933–944 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xufeng, R. et al. RNA editing enzyme ADAR1 is required for early T cell development. Blood Sci 2, 27–32 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcu-Malina, V. et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow. Oncotarget 7, 54370–54379 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartner, J. C., Walkley, C. R., Lu, J. & Orkin, S. H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liddicoat, B. J. et al. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Exp. Hematol. 44, 947–963 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurano, M. et al. Protein kinase R and the integrated stress response drive immunopathology caused by mutations in the RNA deaminase ADAR1. Immunity 54, 1948–1960.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. et al. An AGS-associated mutation in ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the brain. J. Neuroinflammation 19, 285 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, S. et al. Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in natural killer cells. Genome Biol 20, 37 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alqassim, E. Y. et al. RNA editing enzyme APOBEC3A promotes pro-inflammatory M1 macrophage polarization. Commun. Biol 4, 102 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth, S. H. et al. Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep 23, 50–57 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, S. V. et al. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc. Natl Acad. Sci. USA 108, 331–336 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattaneo, R. et al. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55, 255–265 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, S. K. & Lazinski, D. W. Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1. Proc. Natl Acad. Sci. USA 99, 15118–15123 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polson, A. G., Ley, H. L., Bass, B. L. & Casey, J. L. Hepatitis delta virus RNA editing is highly specific for the amber/W site and is suppressed by hepatitis delta antigen. Mol. Cell. Biol 18, 1919–1926 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pujantell, M. et al. RNA editing by ADAR1 regulates innate and antiviral immune functions in primary macrophages. Sci. Rep. 7, 13339 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y.-P. et al. Host APOBEC3G protein inhibits HCV replication through direct binding at NS3. PLoS ONE 10, e0121608 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P. et al. Host-dependent C-to-U RNA editing in SARS-CoV-2 creates novel viral genes with optimized expressibility. Front. Cell. Infect. Microbiol. 14, https://doi.org/10.3389/fcimb.2024.1476605 (2024).

  • Chattopadhyay, P. et al. RNA editing in host lncRNAs as potential modulator in SARS-CoV-2 variants—host immune response dynamics. iScience 27, 109846 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G. & Conticello, S. G. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Science Advances 6, https://doi.org/10.1126/sciadv.abb5813 (2020).

  • Hume, R. I., Dingledine, R. & Heinemann, S. F. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brusa, R. et al. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677–1680 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horsch, M. et al. Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. J. Biol. Chem 286, 18614–18622 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terajima, H. et al. ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat. Genet. 49, 146–151 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mladenova, D. et al. Adar3 is involved in learning and memory in mice. Front. Neurosci. 10, https://doi.org/10.3389/fnins.2018.00243 (2018).

  • Raghava Kurup, R. et al. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS. J. Biol. Chem. 298, 102267 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakes, E., Anderson, A., Cohen-Gadol, A. & Hundley, H. A. Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J. Biol. Chem. 292, 4326–4335 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlström, V. et al. ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation. Nucleic Acids Res 52, 12021–12038 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’sa, K. et al. Astrocytic RNA editing regulates the host immune response to alpha-synuclein. Sci. Adv. 11, 8504 (2025).

    Article 

    Google Scholar
     

  • Li, Y. N. et al. Dynamic A-to-I RNA editing during acute neuroinflammation in sepsis-associated encephalopathy. Front. Neurosci. 18, 1435185 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier, J. C. et al. RNA editing produces glycine receptor alpha3(P185L), resulting in high agonist potency. Nat. Neurosci. 8, 736–744 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichler, S. A. et al. Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J. Cell. Mol. Med 12, 2848–2866 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Çaliskan, G. et al. Identification of parvalbumin interneurons as cellular substrate of fear memory persistence. Cerebr. Cortex 26, 2325–2340 (2016).

    Article 

    Google Scholar
     

  • Kankowski, S. et al. A novel RNA editing sensor tool and a specific agonist determine neuronal protein expression of RNA-edited glycine receptors and identify a genomic APOBEC1 dimorphism as a new genetic risk factor of epilepsy. Front. Mol. Neurosci. 10, https://doi.org/10.3389/fnmol.2017.00439 (2018).

  • Sharma, S., Patnaik, S. K., Kemer, Z. & Baysal, B. E. Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes. RNA Biol 14, 603–610 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Srivastava, P. K. et al. Genome-wide analysis of differential RNA editing in epilepsy. Genome Res. 27, 440–450 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, D. C. et al. Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology. Proc. Natl Acad. Sci. USA 114, 13272–13277 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis. FASEB J. 24, https://doi.org/10.1096/fj.09-152363 (2010).

  • Knebel, U. E. et al. Disrupted RNA editing in beta cells mimics early-stage type 1 diabetes. Cell Metab. 36, 48–61 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kung, M. L. et al. Deficiency of ADAR2 ameliorates metabolic-associated fatty liver disease via AMPK signaling pathways in obese mice. Commun. Biol. 7, 594 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van’t Hooft, F. M., Hardman, D. A., Kane, J. P. & Havel, R. J. Apolipoprotein B (B-48) of rat chylomicrons is not a precursor of the apolipoprotein of low density lipoproteins. Proc. Natl Acad. Sci. USA 79, 179–182 (1982).

  • Morrison, J. R. et al. Apolipoprotein B RNA editing enzyme-deficient mice are viable despite alterations in lipoprotein metabolism. Proc. Natl Acad. Sci. USA 93, 7154–7159 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kendrick, J. S., Chan, L. & Higgins, J. A. Superior role of apolipoprotein B48 over apolipoprotein B100 in chylomicron assembly and fat absorption: an investigation of apobec-1 knock-out and wild-type mice. Biochem. J. 356, 821–827 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, C. M. et al. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation? Am. J. Physiol. Gastrointest. Liver Physiol. 294, G344–G352 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamuta, M., Taniguchi, S., Ishida, B. Y., Kobayashi, K. & Chan, L. Phenotype interaction of apobec-1 and CETP, LDLR, and apoE gene expression in mice: role of apoB mRNA editing in lipoprotein phenotype expression. Arterioscl. Thromb. Vasc. Biol. 18, 747–755 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okuyama, S. et al. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int. J. Cancer 130, 1294–1301 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. Y. et al. Characterization of RNA editing gene APOBEC3C as a candidate tumor suppressor in prostate cancer. Sci. Rep. 15, 17725 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumireddy, K. et al. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nat. Commun. 7, 10715 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tassinari, V. et al. ADAR1 expression is associated with cervical cancer progression and negatively regulates NK cell activity. JCI Insight 10, https://doi.org/10.1172/jci.insight.190244 (2025).

  • Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, A. et al. APOBEC3 mutagenesis drives therapy resistance in breast cancer. Nature Genetics 57, 1452–1462 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H. et al. Clinical significance, tumor immune landscape and immunotherapy responses of ADAR in pan-cancer and its association with proliferation and metastasis of bladder cancer. Aging 15, 6302–6330 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petljak, M. et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 607, 799–807 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. The Cytidine Deaminase APOBEC3G Contributes to Cancer Mutagenesis and Clonal Evolution in Bladder Cancer. Cancer Res 83, 506–520 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jalili, P. et al. Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nat. Commun. 11, 2971 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, https://doi.org/10.1126/science.aan2507 (2017).

  • Fumagalli, D. et al. Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep. 13, 277–289 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paz-Yaacov, N. et al. Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors. Cell Rep. 13, 267–276 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker, A. R. et al. Transcriptome profiling of ADAR1 targets in triple-negative breast cancer cells reveals mechanisms for regulating growth and invasion. Mol. Cancer Res. 20, https://doi.org/10.1158/1541-7786.MCR-21-0604 (2022).

  • Almeric, E. et al. 3’UTR RNA editing driven by ADAR1 modulates MDM2 expression in breast cancer cells. Funct. Integr. Genomics 25, 103 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncology 21, v1–v100 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, L. et al. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J. Clin. Invest. 132, https://doi.org/10.1172/JCI143397 (2022).

  • Zhang, H. et al. Correlation between APOBEC3B expression and clinical characterization in lower-grade gliomas. Front. Oncol. 11, 625838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galeano, F. et al. ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene 32, 998–1009 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cenci, C. et al. Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J. Biol. Chem 283, 7251–7260 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maas, S., Patt, S., Schrey, M. & Rich, A. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc. Natl Acad. Sci. USA 98, 14687–14692 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomaselli, S. et al. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16, 5 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, M. et al. Pan-cancer investigation of C-to-U editing reveals its important role in cancer development and new targets for cancer treatment. Front. Oncol. 13, 1097667 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skuse, G. R., Cappione, A. J., Sowden, M., Metheny, L. J. & Smith, H. C. The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 24, 478–486 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cappione, A. J., French, B. L. & Skuse, G. R. A potential role for NF1 mRNA editing in the pathogenesis of NF1 tumors. Am. J. Hum. Genet. 60, 305–312 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gassner, F. J. et al. RNA editing contributes to epitranscriptome diversity in chronic lymphocytic leukemia. Leukemia 35, 1053–1063 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zipeto, M. A. et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell 19, 177–191 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Q. et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 110, 1041–1046 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beghini, A. et al. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum. Mol. Genet. 9, 2297–2304 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, M. et al. Core-binding factor fusion downregulation of ADAR2 RNA editing contributes to AML leukemogenesis. Blood 141, 3078–3090 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez Martinez, A. et al. C to U RNA editing of MFN1 is regulated by ADARB1 and associates with favourable prognosis in chronic lymphocytic leukemia. Sci. Rep. 15, 29856 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choudhury, M. et al. Widespread RNA hypoediting in schizophrenia and its relevance to mitochondrial function. Science Adv. 9, https://doi.org/10.1126/sciadv.ade9997 (2023).

  • Sodhi, M. S., Burnet, P. W. J., Makoff, A. J., Kerwin, R. W. & Harrison, P. J. RNA editing of the 5-HT2C receptor is reduced in schizophrenia. Mol. Psychiatry 6, 373–379 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eran, A. et al. Comparative RNA editing in autistic and neurotypical cerebella. Mol. Psychiatry 18, 1041–1048 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, F. et al. Lessons from discovery of true ADAR RNA editing sites in a human cell line. BMC Biol 21, 160 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McIntyre, A. B. R. et al. Limits in the detection of m6A changes using MeRIP/m6A-seq. Sci. Rep. 10, 6590 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grozhik, A. V. et al. Antibody cross-reactivity accounts for widespread appearance of m1A in 5′UTRs. Nat. Commun. 10, 5126 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Georgeson, J. & Schwartz, S. No evidence for ac4C within human mRNA upon data reassessment. Mol. Cell 84, 1601–1610 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, H. et al. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Res 46, 7953–7969 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalk, A. M., Taylor, S., Heraud-Farlow, J. E. & Walkley, C. R. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol 20, 268 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, G. & Zhang, J. Human coding RNA editing is generally nonadaptive. Proc. Natl Acad. Sci. USA 111, 3769–3774 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. & Zhang, J. Human C-to-U coding RNA editing is largely nonadaptive. Mol. Biol. Evol. 35, 963–969 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar