Benne, R. et al. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46, 819–826 (1986).
Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).
Baker, A. R. & Slack, F. J. ADAR1 and its implications in cancer development and treatment. Trends Genet. 38, 821–830 (2022).
Pfaller, C. K., George, C. X. & Samuel, C. E. Adenosine deaminases acting on RNA (ADARs) and viral infections. Annu. Rev. Virol 8, 239–264 (2021).
Nakahama, T. et al. ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Rep. 19, https://doi.org/10.15252/embr.201846303 (2018).
XuFeng, R. et al. ADAR1 is required for hematopoietic progenitor cell survival via RNA editing. Proc. Natl Acad. Sci. USA 106, 17763–17768 (2009).
Wales-McGrath, B., Mercer, H. & Piontkivska, H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 24, 685 (2023).
Behm, M., Wahlstedt, H., Widmark, A., Eriksson, M. & Öhman, M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J. Cell Sci. 130, 745–753 (2017).
Ohlson, J., Pedersen J. S., Haussler, D. & Ohman, M. Editing modifies the GABAA receptor subunit α3. RNA 13, 698–703 (2007).
Gan, Z. et al. RNA editing by ADAR2 is metabolically regulated in pancreatic islets and beta-cells. J. Biol. Chem. 281, 33386–33394 (2006).
Gabay, O. et al. Landscape of adenosine-to-inosine RNA recoding across human tissues. Nat. Commun. 13, 1184 (2022).
D’Addabbo, P. et al. REDIportal: toward an integrated view of the A-to-I editing. Nucleic Acids Res 53, D233–D242 (2025).
Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).
Han, L. et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28, 515–528 (2015).
Powell, L. M. et al. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50, 831–840 (1987).
Averna, M., Seip, R., Mankowitz, K. & Schonfeld, G. Postprandial lipemia in subjects with hypobetalipoproteinemia and a single intestinal allele for apoB-48. J. Lipid Res. 34, 1957–1967 (1993).
Navaratnam, N. et al. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J. Biol. Chem 268, 20709–20712 (1993).
Teng, B., Burant, C. F. & Davidson, N. O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).
Pecori, R., Di Giorgio, S., Paulo Lorenzo, J. & Nina Papavasiliou, F. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat. Rev. Genet. 23, 505–518 (2022).
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).
Zhao, H. Q. et al. Profiling the RNA editomes of wild-type C. elegans and ADAR mutants. Genome Research 25, 66–75 (2015).
St Laurent, G. et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nature structural & molecular biology 20, 1333–1339 (2013).
Buchumenski, I. et al. Systematic identification of A-to-I RNA editing in zebrafish development and adult organs. Nucleic Acids Res. 49, 4325–4337 (2021).
Nguyen, T. A. et al. Deep transcriptome profiling reveals limited conservation of A-to-I RNA editing in Xenopus. BMC Biology 21, https://doi.org/10.1186/s12915-023-01756-2 (2023).
Sommer, B., Köhler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).
Licht, K. et al. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Research 29, 1453–1463 (2019).
Li, J. B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).
Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).
Kiran, A. & Baranov, P. V. DARNED: a DAtabase of RNa EDiting in humans. Bioinformatics 26, 1772–1776 (2010).
Ramaswami, G. & Li, J. B. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42, D109–D113 (2014).
Basilio, C., Wahba, A. J., Lengyel, P., Speyer, J. F. & Ochoa, S. Synthetic polynucleotides and the amino acid code. V. Proc. Natl Acad. Sci. USA 48, 613–616 (1962).
Bass, B. L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988).
Polson, A. G., Crain, P. F., Pomerantz, S. C., McCloskey, J. A. & Bass, B. L. The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography-mass spectrometry analysis. Biochemistry 30, 11507–11514 (1991).
Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).
Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 13, 13–21 (2006).
Hu, X., Zou, Q., Yao, L. & Yang, X. Survey of the binding preferences of RNA-binding proteins to RNA editing events. Genome Biology 23, 169 (2022).
Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).
Mendoza, H. G. & Beal, P. A. Structural and functional effects of inosine modification in mRNA. RNA 30, 512–520 (2024).
Wright, D. J., Rice, J. L., Yanker, D. M. & Znosko, B. M. Nearest neighbor parameters for inosine x uridine pairs in RNA duplexes. Biochemistry 46, 4625–4634 (2007).
Wright, D. J., Force, C. R. & Znosko, B. M. Stability of RNA duplexes containing inosine·cytosine pairs. Nucleic Acids Res 46, 12099–12108 (2018).
Murphy, F. V. & Ramakrishnan, V. Structure of a purine–purine wobble base pair in the decoding center of the ribosome. Nat. Struct. Mol. Biol. 11, 1251–1252 (2004).
Zheng, Y. Y., Reddy, K., Vangaveti, S. & Sheng, J. Inosine-induced base pairing diversity during reverse transcription. ACS Chem. Biol. 19, 348–356 (2024).
Licht, K. et al. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 47, 3–14 (2019).
Bass, B. & Weintraub, H. A developmentally regulated activity that unwinds RNA duplexes. Cell 48, 607–613 (1987).
Wagner, R. W., Smith, J. E., Cooperman B. S. & Nishikura K. A. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Nat. Acad. Sci. USA 86, 2647−2651 (1989).
Cristalli, G. et al. Adenosine deaminase: functional implications and different classes of inhibitors. Med. Res. Rev. 21, 105–128 (2001).
Maas, S., Gerber, A. P. & Rich, A. Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc. Natl Acad. Sci. USA 96, 8895–8900 (1999).
Gerber, A. P. & Keller, W. An Adenosine Deaminase that Generates Inosine at the Wobble Position of tRNAs. Science 286, 1146–1149 (1999).
Snyder, E., Chukrallah, L., Seltzer, K., Goodwin, L. & Braun, R. E. ADAD1 and ADAD2, testis-specific adenosine deaminase domain-containing proteins, are required for male fertility. Sci. Rep. 10, 11536 (2020).
Dolce, L. G. et al. Structural basis for sequence-independent substrate selection by eukaryotic wobble base tRNA deaminase ADAT2/3. Nat. Commun. 13, https://doi.org/10.1038/s41467-022-34441-z (2022).
McKee, A. E. et al. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev Biol. 5, https://doi.org/10.1186/1471-213X-5-14 (2005).
Valente, L. & Nishikura, K. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem 282, 16054–16061 (2007).
Ryter, J. M. & Schultz, S. C. Molecular basis of double-stranded RNA–protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 17, 7505–7513 (1998).
Mboukou, A. et al. Dimerization of ADAR1 modulates site-specificity of RNA editing. Nat. Commun. 15, 10051 (2024).
Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).
Stefl, R. et al. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143, 225–237 (2010).
Levanon, E. Y. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Research 33, 1162–1168 (2005).
Chen, C. X. et al. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6, 755–767 (2000).
Melcher, T. et al. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem. 271, 31795–31798 (1996).
Maas, S. & Gommans, W. M. Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Research 37, 5822–5829 (2009).
George, C. X. & Samuel, C. E. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl Acad. Sci. USA 96, 4621–4626 (1999).
Agranat, L., Raitskin, O., Sperling, J. & Sperling, R. The editing enzyme ADAR1 and the mRNA surveillance protein hUpf1 interact in the cell nucleus. Proc. Natl Acad. Sci. USA 105, 5028–5033 (2008).
Koeris, M. Modulation of ADAR1 editing activity by Z-RNA in vitro. Nucleic Acids Res 33, 5362–5370 (2005).
Athanasiadis, A. et al. The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J Mol. Biol. 351, 496–507 (2005).
Herbert, A. The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res 26, 3486–3493 (1998).
Poulsen, H., Nilsson, J., Damgaard, C. K., Egebjerg, J. & Kjems, J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell Biol. 21, 7862–7871 (2001).
Nichols, P. J. et al. Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions. Nat. Commun. 12, https://doi.org/10.1038/s41467-021-21039-0 (2021).
Small, I. D. et al. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 101, https://doi.org/10.1111/tpj.14578 (2020).
Rosenberg, B. R., Hamilton, C. E., Mwangi, M. M., Dewell, S. & Papavasiliou, F. N. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat. Struct. Mol. Biol. 18, 230–236 (2011).
Gu, T. et al. Canonical A-to-I and C-to-U RNA editing is enriched at 3′UTRs and microRNA target sites in multiple mouse tissues. PLoS ONE 7, e33720 (2012).
Rayon-Estrada, V. et al. Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function. Proc. Natl Acad. Sci. USA 114, 13296–13301 (2017).
Sharma, S. et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat. Commun. 6, 6881 (2015).
Fonzino, A. et al. Unraveling C-to-U RNA editing events from direct RNA sequencing. RNA Biol 21, 113–126 (2024).
Serra, M. J., Lyttle, M. H., Axenson, T. J., Schadt, C. A. & Turner, D. H. RNA hairpin loop stability depends on closing base pair. Nucleic Acids Res 21, 3845–3849 (1993).
Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).
Trikha, J. Crystal structure of a 14 bp RNA duplex with non-symmetrical tandem GxU wobble base pairs. Nucleic Acids Res. 27, 1728–1739 (1999).
Ladner, J. E. et al. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc. Natl Acad. Sci. USA 72, 4414–4418 (1975).
Holley, R. W. et al. Structure of a Ribonucleic Acid. Science 147, 1462–1465 (1965).
Quigley, G. J. & Rich, A. Structural Domains of Transfer RNA Molecules. Science 194, 796–806 (1976).
Hirano, K., Min, J., Funahashi, T., Baunoch, D. A. & Davidson, N. O. Characterization of the human apobec-1 gene: expression in gastrointestinal tissues determined by alternative splicing with production of a novel truncated peptide. J. Lipid Res. 38, 847–859 (1997).
Demontis, S. et al. Isolation and characterization of the gene coding for human cytidine deaminase. Biochim. Biophys. Acta 1443, 323–333 (1998).
Kühn, K., Bertling, W. M. & Emmrich, F. Cloning of a functional cDNA for human cytidine deaminase (CDD) and its use as a marker of monocyte/macrophage differentiation. Biochem. Biophys. Res. Commun. 190, 1–7 (1993).
Kim, K. et al. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness. Sci. Rep. 12, 14972 (2022).
Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).
Abdouni, H. S. et al. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID. Mol. Immunol. 93, 94–106 (2018).
Marino, D. et al. APOBEC4 enhances the replication of HIV-1. PLoS ONE 11, e0155422 (2016).
Krishnan, A., Iyer, L. M., Holland, S. J., Boehm, T. & Aravind, L. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc. Natl Acad. Sci. USA 115, 3201 (2018).
Liu, M. C. et al. AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-04273-x (2018).
Ito, J., Gifford, R. J. & Sato, K. Retroviruses drive the rapid evolution of mammalian APOBEC3 genes. Proc. Natl Acad. Sci. 117, 610–618, https://doi.org/10.1073/pnas.1914183116 (2020).
Conticello, S. G., Thomas, C. J., Petersen-Mahrt, S. K. & Neuberger, M. S. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Molecular Biology and Evolution 22, 367–377 (2005).
Salter, J. D. & Smith, H. C. Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends Biochem. Sci. 43, 606–622 (2018).
Wolfe, A. D., Li, S., Goedderz, C. & Chen, X. S. The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. NAR Cancer 2, zcaa027 (2020).
Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).
Mehta, A., Kinter, M. T., Sherman, N. E. & Driscoll, D. M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).
Fossat, N. et al. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47. EMBO Rep 15, 903–910 (2014).
Wang, S. et al. Identification of RBM46 as a novel APOBEC1 cofactor for C-to-U RNA-editing activity. J. Mol. Biol. 435, 168333 (2023).
Chester, A. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J 22, 3971–3982 (2003).
Byeon, I.-J. L. et al. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat. Commun. 4, 1890 (2013).
Kouno, T. et al. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat. Commun. 8, https://doi.org/10.1038/ncomms15024 (2017).
Tang, G. et al. Creating RNA specific C-to-U editase from APOBEC3A by separation of its activities on DNA and RNA substrates. ACS Synth. Biol. 10, 1106–1115 (2021).
Chelico, L., Pham, P., Calabrese, P. & Goodman, M. F. APOBEC3G DNA deaminase acts processively 3′ -> 5′ on single-stranded DNA. Nat. Struct. Mol. Biol. 13, 392–399 (2006).
Fukuda, H. et al. Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association. Frontiers in Cellular and Infection Microbiology 9, 129 (2019).
Yang, H., Kim, K., Li, S., Pacheco, J. & Chen, X. S. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat. Commun. 13, 7498 (2022).
Bennett, R. P., Presnyak, V., Wedekind, J. E. & Smith, H. C. Nuclear exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J. Biol. Chem. 283, 7320–7327 (2008).
Wu, B. et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152, 276–289 (2013).
de Reuver, R. et al. ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep 36, 109500 (2021).
Ahmad, S. et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172, 797–810 (2018).
Guo, X. et al. ADAR1 Zα domain P195A mutation activates the MDA5-dependent RNA-sensing signaling pathway in brain without decreasing overall RNA editing. Cell Rep 42, 112733 (2023).
Nakahama, T. et al. Mutations in the adenosine deaminase ADAR1 that prevent endogenous Z-RNA binding induce Aicardi–Goutières-syndrome-like encephalopathy. Immunity 54, 1976–1988.e7 (2021).
Pestal, K. et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43, 933–944 (2015).
Xufeng, R. et al. RNA editing enzyme ADAR1 is required for early T cell development. Blood Sci 2, 27–32 (2020).
Marcu-Malina, V. et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow. Oncotarget 7, 54370–54379 (2016).
Hartner, J. C., Walkley, C. R., Lu, J. & Orkin, S. H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).
Liddicoat, B. J. et al. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Exp. Hematol. 44, 947–963 (2016).
Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).
Maurano, M. et al. Protein kinase R and the integrated stress response drive immunopathology caused by mutations in the RNA deaminase ADAR1. Immunity 54, 1948–1960.e5 (2021).
Guo, X. et al. An AGS-associated mutation in ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the brain. J. Neuroinflammation 19, 285 (2022).
Sharma, S. et al. Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in natural killer cells. Genome Biol 20, 37 (2019).
Alqassim, E. Y. et al. RNA editing enzyme APOBEC3A promotes pro-inflammatory M1 macrophage polarization. Commun. Biol 4, 102 (2021).
Roth, S. H. et al. Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep 23, 50–57 (2018).
Ward, S. V. et al. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc. Natl Acad. Sci. USA 108, 331–336 (2011).
Cattaneo, R. et al. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55, 255–265 (1988).
Wong, S. K. & Lazinski, D. W. Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1. Proc. Natl Acad. Sci. USA 99, 15118–15123 (2002).
Polson, A. G., Ley, H. L., Bass, B. L. & Casey, J. L. Hepatitis delta virus RNA editing is highly specific for the amber/W site and is suppressed by hepatitis delta antigen. Mol. Cell. Biol 18, 1919–1926 (1998).
Pujantell, M. et al. RNA editing by ADAR1 regulates innate and antiviral immune functions in primary macrophages. Sci. Rep. 7, 13339 (2017).
Zhu, Y.-P. et al. Host APOBEC3G protein inhibits HCV replication through direct binding at NS3. PLoS ONE 10, e0121608 (2015).
Zhang, P. et al. Host-dependent C-to-U RNA editing in SARS-CoV-2 creates novel viral genes with optimized expressibility. Front. Cell. Infect. Microbiol. 14, https://doi.org/10.3389/fcimb.2024.1476605 (2024).
Chattopadhyay, P. et al. RNA editing in host lncRNAs as potential modulator in SARS-CoV-2 variants—host immune response dynamics. iScience 27, 109846 (2024).
Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G. & Conticello, S. G. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Science Advances 6, https://doi.org/10.1126/sciadv.abb5813 (2020).
Hume, R. I., Dingledine, R. & Heinemann, S. F. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031 (1991).
Brusa, R. et al. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677–1680 (1995).
Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).
Horsch, M. et al. Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. J. Biol. Chem 286, 18614–18622 (2011).
Terajima, H. et al. ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat. Genet. 49, 146–151 (2017).
Mladenova, D. et al. Adar3 is involved in learning and memory in mice. Front. Neurosci. 10, https://doi.org/10.3389/fnins.2018.00243 (2018).
Raghava Kurup, R. et al. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS. J. Biol. Chem. 298, 102267 (2022).
Oakes, E., Anderson, A., Cohen-Gadol, A. & Hundley, H. A. Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J. Biol. Chem. 292, 4326–4335 (2017).
Karlström, V. et al. ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation. Nucleic Acids Res 52, 12021–12038 (2024).
D’sa, K. et al. Astrocytic RNA editing regulates the host immune response to alpha-synuclein. Sci. Adv. 11, 8504 (2025).
Li, Y. N. et al. Dynamic A-to-I RNA editing during acute neuroinflammation in sepsis-associated encephalopathy. Front. Neurosci. 18, 1435185 (2024).
Meier, J. C. et al. RNA editing produces glycine receptor alpha3(P185L), resulting in high agonist potency. Nat. Neurosci. 8, 736–744 (2005).
Eichler, S. A. et al. Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J. Cell. Mol. Med 12, 2848–2866 (2008).
Çaliskan, G. et al. Identification of parvalbumin interneurons as cellular substrate of fear memory persistence. Cerebr. Cortex 26, 2325–2340 (2016).
Kankowski, S. et al. A novel RNA editing sensor tool and a specific agonist determine neuronal protein expression of RNA-edited glycine receptors and identify a genomic APOBEC1 dimorphism as a new genetic risk factor of epilepsy. Front. Mol. Neurosci. 10, https://doi.org/10.3389/fnmol.2017.00439 (2018).
Sharma, S., Patnaik, S. K., Kemer, Z. & Baysal, B. E. Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes. RNA Biol 14, 603–610 (2017).
Srivastava, P. K. et al. Genome-wide analysis of differential RNA editing in epilepsy. Genome Res. 27, 440–450 (2017).
Cole, D. C. et al. Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology. Proc. Natl Acad. Sci. USA 114, 13272–13277 (2017).
Yang, L. et al. Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis. FASEB J. 24, https://doi.org/10.1096/fj.09-152363 (2010).
Knebel, U. E. et al. Disrupted RNA editing in beta cells mimics early-stage type 1 diabetes. Cell Metab. 36, 48–61 (2024).
Kung, M. L. et al. Deficiency of ADAR2 ameliorates metabolic-associated fatty liver disease via AMPK signaling pathways in obese mice. Commun. Biol. 7, 594 (2024).
Van’t Hooft, F. M., Hardman, D. A., Kane, J. P. & Havel, R. J. Apolipoprotein B (B-48) of rat chylomicrons is not a precursor of the apolipoprotein of low density lipoproteins. Proc. Natl Acad. Sci. USA 79, 179–182 (1982).
Morrison, J. R. et al. Apolipoprotein B RNA editing enzyme-deficient mice are viable despite alterations in lipoprotein metabolism. Proc. Natl Acad. Sci. USA 93, 7154–7159 (1996).
Kendrick, J. S., Chan, L. & Higgins, J. A. Superior role of apolipoprotein B48 over apolipoprotein B100 in chylomicron assembly and fat absorption: an investigation of apobec-1 knock-out and wild-type mice. Biochem. J. 356, 821–827 (2001).
Lo, C. M. et al. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation? Am. J. Physiol. Gastrointest. Liver Physiol. 294, G344–G352 (2008).
Nakamuta, M., Taniguchi, S., Ishida, B. Y., Kobayashi, K. & Chan, L. Phenotype interaction of apobec-1 and CETP, LDLR, and apoE gene expression in mice: role of apoB mRNA editing in lipoprotein phenotype expression. Arterioscl. Thromb. Vasc. Biol. 18, 747–755 (1998).
Okuyama, S. et al. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int. J. Cancer 130, 1294–1301 (2012).
Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).
Wang, L. Y. et al. Characterization of RNA editing gene APOBEC3C as a candidate tumor suppressor in prostate cancer. Sci. Rep. 15, 17725 (2025).
Gumireddy, K. et al. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nat. Commun. 7, 10715 (2016).
Tassinari, V. et al. ADAR1 expression is associated with cervical cancer progression and negatively regulates NK cell activity. JCI Insight 10, https://doi.org/10.1172/jci.insight.190244 (2025).
Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).
Gupta, A. et al. APOBEC3 mutagenesis drives therapy resistance in breast cancer. Nature Genetics 57, 1452–1462 (2025).
Yu, H. et al. Clinical significance, tumor immune landscape and immunotherapy responses of ADAR in pan-cancer and its association with proliferation and metastasis of bladder cancer. Aging 15, 6302–6330 (2023).
Petljak, M. et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 607, 799–807 (2022).
Liu, W. et al. The Cytidine Deaminase APOBEC3G Contributes to Cancer Mutagenesis and Clonal Evolution in Bladder Cancer. Cancer Res 83, 506–520 (2023).
Jalili, P. et al. Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nat. Commun. 11, 2971 (2020).
Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).
Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, https://doi.org/10.1126/science.aan2507 (2017).
Fumagalli, D. et al. Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep. 13, 277–289 (2015).
Paz-Yaacov, N. et al. Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors. Cell Rep. 13, 267–276 (2015).
Baker, A. R. et al. Transcriptome profiling of ADAR1 targets in triple-negative breast cancer cells reveals mechanisms for regulating growth and invasion. Mol. Cancer Res. 20, https://doi.org/10.1158/1541-7786.MCR-21-0604 (2022).
Almeric, E. et al. 3’UTR RNA editing driven by ADAR1 modulates MDM2 expression in breast cancer cells. Funct. Integr. Genomics 25, 103 (2025).
Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncology 21, v1–v100 (2019).
Jiang, L. et al. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J. Clin. Invest. 132, https://doi.org/10.1172/JCI143397 (2022).
Zhang, H. et al. Correlation between APOBEC3B expression and clinical characterization in lower-grade gliomas. Front. Oncol. 11, 625838 (2021).
Galeano, F. et al. ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene 32, 998–1009 (2013).
Cenci, C. et al. Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J. Biol. Chem 283, 7251–7260 (2008).
Maas, S., Patt, S., Schrey, M. & Rich, A. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc. Natl Acad. Sci. USA 98, 14687–14692 (2001).
Tomaselli, S. et al. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16, 5 (2015).
Guo, M. et al. Pan-cancer investigation of C-to-U editing reveals its important role in cancer development and new targets for cancer treatment. Front. Oncol. 13, 1097667 (2023).
Skuse, G. R., Cappione, A. J., Sowden, M., Metheny, L. J. & Smith, H. C. The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 24, 478–486 (1996).
Cappione, A. J., French, B. L. & Skuse, G. R. A potential role for NF1 mRNA editing in the pathogenesis of NF1 tumors. Am. J. Hum. Genet. 60, 305–312 (1997).
Gassner, F. J. et al. RNA editing contributes to epitranscriptome diversity in chronic lymphocytic leukemia. Leukemia 35, 1053–1063 (2021).
Zipeto, M. A. et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell 19, 177–191 (2016).
Jiang, Q. et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 110, 1041–1046 (2013).
Beghini, A. et al. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum. Mol. Genet. 9, 2297–2304 (2000).
Guo, M. et al. Core-binding factor fusion downregulation of ADAR2 RNA editing contributes to AML leukemogenesis. Blood 141, 3078–3090 (2023).
Gonzalez Martinez, A. et al. C to U RNA editing of MFN1 is regulated by ADARB1 and associates with favourable prognosis in chronic lymphocytic leukemia. Sci. Rep. 15, 29856 (2025).
Choudhury, M. et al. Widespread RNA hypoediting in schizophrenia and its relevance to mitochondrial function. Science Adv. 9, https://doi.org/10.1126/sciadv.ade9997 (2023).
Sodhi, M. S., Burnet, P. W. J., Makoff, A. J., Kerwin, R. W. & Harrison, P. J. RNA editing of the 5-HT2C receptor is reduced in schizophrenia. Mol. Psychiatry 6, 373–379 (2001).
Eran, A. et al. Comparative RNA editing in autistic and neurotypical cerebella. Mol. Psychiatry 18, 1041–1048 (2012).
Wang, F. et al. Lessons from discovery of true ADAR RNA editing sites in a human cell line. BMC Biol 21, 160 (2023).
McIntyre, A. B. R. et al. Limits in the detection of m6A changes using MeRIP/m6A-seq. Sci. Rep. 10, 6590 (2020).
Grozhik, A. V. et al. Antibody cross-reactivity accounts for widespread appearance of m1A in 5′UTRs. Nat. Commun. 10, 5126 (2019).
Georgeson, J. & Schwartz, S. No evidence for ac4C within human mRNA upon data reassessment. Mol. Cell 84, 1601–1610 (2024).
Hong, H. et al. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Res 46, 7953–7969 (2018).
Chalk, A. M., Taylor, S., Heraud-Farlow, J. E. & Walkley, C. R. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol 20, 268 (2019).
Xu, G. & Zhang, J. Human coding RNA editing is generally nonadaptive. Proc. Natl Acad. Sci. USA 111, 3769–3774 (2014).
Liu, Z. & Zhang, J. Human C-to-U coding RNA editing is largely nonadaptive. Mol. Biol. Evol. 35, 963–969 (2018).


















Leave a Reply