Vitamin B6 form produced by Lactobacillus induces metabolic disorder and suppresses multi-pathogenic bacteria

Vitamin B6 form produced by Lactobacillus induces metabolic disorder and suppresses multi-pathogenic bacteria

  • Antunes, P., Novais, C. & Peixe, L. Food-to-humans bacterial transmission. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mtbp-0019-2016 (2020).

  • Kraemer, S. A., Ramachandran, A. & Perron, G. A.-O. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7, 180 (2019).


    Google Scholar
     

  • Vasudeva Rao, Y., Das, B. K., Jyotyrmayee, P. & Chakrabarti, R. Effect of Achyranthes aspera on the immunity and survival of Labeo rohita infected with Aeromonas hydrophila. Fish Shellfish Immunol. 20, 263–273 (2006).


    Google Scholar
     

  • Abdel-Tawwab, M., Abdel-Rahman, A. M. & Ismael, N. E. M. Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280, 185–189 (2008).


    Google Scholar
     

  • Singh, K., Kallali, B., Kumar, A. & Thaker, V. Probiotics: A review. Asian Pacific J. Tropical Biomed. 1, S287–S290 (2011).


    Google Scholar
     

  • Hu, J. L. et al. Modulation of cytokine gene expression by selected Lactobacillus isolates in the ileum, caecal tonsils and spleen of Salmonella-challenged broilers. Avian Pathol. 44, 463–469 (2015).


    Google Scholar
     

  • Taha-Abdelaziz, K. et al. In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Sci. Rep. 9, 17903 (2019).


    Google Scholar
     

  • Chung, L. K. & Raffatellu, M. Probiotic fengycins dis(Agr)ee with Staphylococcus aureus colonization. Cell Res. 29, 93–94 (2019).


    Google Scholar
     

  • Barker, T. Vitamins and human health: systematic reviews and original research. Nutrients 15, 2888 (2023).


    Google Scholar
     

  • Rosenberg, J., Ischebeck, T. & Commichau, F. M. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol. Adv. 35, 31–40 (2017).


    Google Scholar
     

  • Lutfi, L. L., Shaaban, M. I. & Elshaer, S. L. Vitamin D and vitamin K1 as novel inhibitors of biofilm in Gram-negative bacteria. BMC Microbiol. 24, 173 (2024).


    Google Scholar
     

  • Akasov, R. A. et al. Evaluation of molecular mechanisms of riboflavin anti-COVID-19 action reveals anti-inflammatory efficacy rather than antiviral activity. Biochim. Biophys. Acta 1868, 130582 (2024).


    Google Scholar
     

  • Grant, E. T. et al. Dietary fibers boost gut microbiota-produced B vitamin pool and alter host immune landscape. Microbiome 12, 179 (2024).


    Google Scholar
     

  • Rahman, S. et al. Gut microbial metabolites and its impact on human health. Annal. Gastroenterol. 36, 360–368 (2023).


    Google Scholar
     

  • Yoshikane, Y. et al. Engineering Mesorhizobium loti pyridoxamine–pyruvate aminotransferase for production of pyridoxamine with l-glutamate as an amino donor. J. Mol. Catal. B. Enzymatic 67, 104–110 (2010).


    Google Scholar
     

  • Zhang, P. et al. Vitamin B6 prevents IL-1β protein production by inhibiting NLRP3 inflammasome activation*. J. Biol. Chem. 291, 24517–24527 (2016).


    Google Scholar
     

  • Metz, T. O., Alderson, N. L., Thorpe, S. R. & Baynes, J. W. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Archives Biochem. Biophys. 419, 41–49 (2003).


    Google Scholar
     

  • Degenhardt, T. P. et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 61, 939–950 (2002).


    Google Scholar
     

  • Brown M. J., Ameer; M. A., Daley S. F., Beier. K. Vitamin B6 Deficiency. (StatPearls Publishing, 2023).

  • Revuelta, J. L., Buey, R. M., Ledesma-Amaro, R. & Vandamme, E. J. Microbial biotechnology for the synthesis of (pro)vitamins, biopigments and antioxidants: challenges and opportunities. Microb. Motechnol. 9, 564–567 (2016).


    Google Scholar
     

  • Melse-Boonstra, A. Bioavailability of micronutrients from nutrient-dense whole foods: zooming in on dairy, vegetables, and fruits. Front. Nutrition 7, 101 (2020).


    Google Scholar
     

  • Lešková, E. et al. Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J. Food Compos. Anal. 19, 252–276 (2006).


    Google Scholar
     

  • Vandamme, E. J. Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J. Chem. Technol. Biotechnol. 53, 313–327 (1992).


    Google Scholar
     

  • Qi, X. et al. Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome 11, 135 (2023).


    Google Scholar
     

  • Vitellio, P. et al. Effects of bifidobacterium longum and lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: a randomised, double-blind, cross-over study. Nutrition 11, 886 (2019).


    Google Scholar
     

  • LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).


    Google Scholar
     

  • Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V. & Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 6, 148 (2015).


    Google Scholar
     

  • Xu, L. et al. Probiotic consortia and their metabolites ameliorate the symptoms of inflammatory bowel diseases in a colitis mouse model. Microbiol. Spectr. 10, e00657–00622 (2022).


    Google Scholar
     

  • Yang, Y. et al. Identification and function of the pdxY gene, which encodes a novel pyridoxal kinase involved in the salvage pathway of pyridoxal 5’-phosphate biosynthesis in Escherichia coli K-12. J. Bacteriol. 180, 1814–1821 (1998).


    Google Scholar
     

  • Shi, J. et al. Structural insights into transcription regulation of the global OmpR/PhoB family regulator PhoP from mycobacterium tuberculosis. Nat.Commun. 16, 1573 (2025).


    Google Scholar
     

  • Nouri, K., Feng, Y. & Schimmer, A. D. Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death Dis. 11, 841 (2020).


    Google Scholar
     

  • Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99, 431–436 (2002).


    Google Scholar
     

  • Voskuil, M. I., Visconti, K. C. & Schoolnik, G. K. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis 84, 218–227 (2004).


    Google Scholar
     

  • Khan, M. I. R., Kamilya, D., Choudhury, T. G., Tripathy, P. S. & Rathore, G. Deciphering the probiotic potential of bacillus amyloliquefaciens COFCAU_P1 isolated from the intestine of labeo rohita through in vitro and genetic assessment. Probiotics Antimicrobial. Proteins 13, 1572–1584 (2021).


    Google Scholar
     

  • Feng, J. et al. Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish Shellfish Immunol. 93, 73–81 (2019).


    Google Scholar
     

  • Leistikow et al. Bacillus subtilis-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant Staphylococcus aureus. mSystems 9, e00712–e00724 (2024).


    Google Scholar
     

  • McFarland, L. V. Efficacy of single-strain probiotics versus multi-strain mixtures: systematic review of strain and disease specificity. Digestive Dis. Sci. 66, 694–704 (2021).


    Google Scholar
     

  • Di Cagno, R. et al. Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics 10, 2175–2190 (2010).


    Google Scholar
     

  • Parthasarathy, R. & Ravi, D. Probiotic bacteria as growth promoter and biocontrol agent against Aeromonas hydrophila in Catla catla (Hamilton, 1822). Indian J. Fisheries 58, 87–93 (2011).


    Google Scholar
     

  • Lakhtin, M. et al. Probiotic lactobacillus and bifidobacterial lectins against candida albicans and staphylococcus aureus clinical strains: new class of the pathogen biofilm destructors. Probiotics Antimicrob. Proteins 2, 186–196 (2010).


    Google Scholar
     

  • Kumar, M. et al. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli. Int. J. Antimicrobial. Agents 48, 265–270 (2016).


    Google Scholar
     

  • Pereira, E., Silvares, R. R., Flores, E. E. I., Rodrigues, K. L. & Daliry, A. A.-O. Pyridoxamine improves metabolic and microcirculatory complications associated with nonalcoholic fatty liver disease. Microcirculation 27, e12603 (2020).


    Google Scholar
     

  • Amrein, K. et al. LLL 44 – 2 – Micronutrients in clinical nutrition: vitamins. Clin. Nutrition ESPEN 61, 427–436 (2024).


    Google Scholar
     

  • Li, Z., Zhao, Y., Zhou, H., Luo, H. A.-O. & Zhan, C. A.-O. Catalytic roles of coenzyme pyridoxal-5’-phosphate (PLP) in PLP-dependent enzymes: reaction pathway for methionine-γ-lyase-catalyzed L-methionine depletion. ACS Catal. 10, 2198–2210 (2020).


    Google Scholar
     

  • Parra, M., Stahl, S. & Hellmann, H. Vitamin B₆ and its role in cell metabolism and physiology. Cells 7, 84 (2018).


    Google Scholar
     

  • Banks, J. & Cane, D. E. Biosynthesis of vitamin B6: direct identification of the product of the PdxA-catalyzed oxidation of 4-hydroxy-l-threonine-4-phosphate using electrospray ionization mass spectrometry. Bioorganic Med. Chem. Lett. 14, 1633–1636 (2004).


    Google Scholar
     

  • Kim, J. et al. Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB. PNS 116, 24164–24173 (2019).


    Google Scholar
     

  • Battula, P., Ap Fau, D. ubnovitsky, Papageorgiou, A. C. & Papageorgiou, A. C. Structural basis of L-phosphoserine binding to Bacillus alcalophilus phosphoserine aminotransferase. Acta Crystallogr. Sect. D. Biol. Crystallogr. 69, 804–811 (2013).


    Google Scholar
     

  • Mascolo, E. A.-O., Amoroso, N. A.-O., Saggio, I. A.-O., Merigliano, C. A.-O. & Vernì, F. A.-O. Pyridoxine/pyridoxamine 5’-phosphate oxidase (Sgll/PNPO) is important for DNA integrity and glucose homeostasis maintenance in Drosophila. J. Cell. Physiol. 235, 504–512 (2020).


    Google Scholar
     

  • Tramonti, A. A.-O. et al. Functional and structural properties of pyridoxal reductase (PdxI) from Escherichia coli: a pivotal enzyme in the vitamin B6 salvage pathway.FEBS J. 290, 5628–5651 (2023).


    Google Scholar
     

  • Dong, J. et al. Genistein inhibits the pathogenesis of aeromonas hydrophila by disrupting quorum sensing mediated biofilm formation and aerolysin production. Front. Pharmacol. 12, 753581 (2021).


    Google Scholar
     

  • Zhang, Y. et al. Insights into the inhibition of aeromonas hydrophila d-alanine-d-alanine ligase by integration of kinetics and structural analysis. J. Agr. Food Chem. 68, 7509–7519 (2020).


    Google Scholar
     

  • Semwal, A., Kumar, A. & Kumar, N. A review on pathogenicity of Aeromonas hydrophila and their mitigation through medicinal herbs in aquaculture. Heliyon 9, e14088 (2023).


    Google Scholar
     

  • Albin, R. & Albers, J. Long-term follow-up of pyridoxine-induced acute sensory neuropathy-neuronopathy. Neurology 40, 1319 (1990).


    Google Scholar
     

  • Ling, Y. et al. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Design, Dev. Therapy 15, 4289–4338 (2021).


    Google Scholar
     

  • Erwin, E. R., Addison, A. P., John, S. F., Olaleye, O. A. & Rosell, R. C. Pharmacokinetics of isoniazid: the good, the bad, and the alternatives. Tuberculosis 116, S66–S70 (2019).


    Google Scholar
     

  • Zhang, Y., Shi, W., Zhang, W. & Mitchison, D. Mechanisms of pyrazinamide action and resistance. Microbiol. Spectr. 2, MGM2-0023-2013. (2014).


    Google Scholar
     

  • Vilchèze, C. & Jacobs, W. R. Jr The isoniazid paradigm of killing, resistance, and persistence in mycobacterium tuberculosis. J. Mol. Cell Biol. 431, 3450–3461 (2019).


    Google Scholar
     

  • Nikaido, H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. MMBR 67, 593–656 (2003).


    Google Scholar
     

  • Bianchini Fulindi, R. et al. Zinc-based nanoparticles reduce bacterial biofilm formation. Microbiol. Spectr. 11, e04831–04822 (2023).


    Google Scholar
     

  • Yao, Z. et al. Integrated succinylome and metabolome profiling reveals crucial role of s-ribosylhomocysteine lyase in quorum sensing and metabolism of aeromonas hydrophila*. Mol. Cell. Proteomics 18, 200–215 (2019).


    Google Scholar
     

  • Bargiela, D. et al. Vitamin B6 metabolism determines T cell anti-tumor responses. Front. Immunol. 13, 837669 (2022).


    Google Scholar
     

  • Prakit, B., Chaiyod, R., Khongkool, K., Chanasit, W. & Lertworapreecha, M. Multifunctional probiotic and safety attributes Heyndrickxia coagulans isolated from stingless bee honey. Annal. Microbiol. 75, 3 (2025).


    Google Scholar
     

  • Liu, Y. et al. Whole genome analysis and in vivo safety assessment of probiotic candidate Lactobacillus acidophilus L177. BMC Microbiol. 25, 398 (2025).


    Google Scholar
     

  • Zhang, L. et al. Effects of Aeromonas hydrophila infection on the intestinal microbiota, transcriptome, and metabolomic of common carp (Cyprinus carpio). Fish Shellfish Immunol 139, 108876 (2023).


    Google Scholar
     

  • Li, J., Fang, P., Yi, X., Kumar, V. & Peng, M. Probiotics Bacillus cereus and B. subtilis reshape the intestinal microbiota of Pengze crucian carp (Carassius auratus var. Pengze) fed with high plant protein diets. Front. Nutrition 9, 1027641 (2022).


    Google Scholar
     

  • Messaoudi, S. et al. In vitro evaluation of the probiotic potential of Lactobacillus salivarius SMXD51. Anaerobe 18, 584–589 (2012).


    Google Scholar
     

  • Lim, C.-H., Ozkanca, R. & Flint, K. P. The effects of osmotic stress on survival and alkaline phosphatase activity of Aeromonas hydrophila. FEMS Microbiol. Lett. 137, 19–24 (1996).


    Google Scholar
     

  • Molina, R. et al. Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon 46, 725–735 (2005).


    Google Scholar
     

  • Bhavan, P. S. & Geraldine, P. Profiles of acid and alkaline phosphatases in the prawn Macrobrachium malcolmsonii exposed to endosulfan. J. Environ. Biol. 25, 213–219 (2004).


    Google Scholar
     

  • Liu, X. et al. Impact of Aeromonas hydrophila and infectious spleen and kidney necrosis virus infections on susceptibility and host immune response in Chinese perch (Siniperca chuatsi). Fish Shellfish Immunol. 105, 117–125 (2020).


    Google Scholar
     

  • Suzuki, M. A.-O. et al. Host-microbe cross-talk governs amino acid chirality to regulate survival and differentiation of B cells. Sci. Adv. 7, eabd6480 (2021).


    Google Scholar
     

  • Wu, Y. et al. Gut microbes consume host energy and reciprocally provide beneficial factors to sustain a symbiotic relationship with the host. Sci. Total Environ. 904, 166773 (2023).


    Google Scholar
     

  • Gong, A. D. et al. The inhibitory effect of pseudomonas stutzeri YM6 on aspergillus flavus growth and aflatoxins production by the production of volatile dimethyl trisulfide. Toxins 14, 788 (2022).


    Google Scholar
     

  • Ghosh A. R. Chapter 6 – Probiotics in the rescue of gut inflammation. In Therapeutic, Probiotic, and Unconventional Foods (eds. Grumezescu, A. M. & Holban, A. M.) (Academic Press, 2018).

  • Jeong, Y. J., Kim, D. H. & Lee, K. A.-O. X. Homeostasis effects of fermented Maillard reaction products by Lactobacillus gasseri 4M13 in dextran sulfate sodium-induced colitis mice. J. Sci.Food Agr. 102, 434–444 (2022).


    Google Scholar
     

  • Patel, V. & Matange, N. A.-O. Adaptation and compensation in a bacterial gene regulatory network evolving under antibiotic selection. Elife 10, e70931 (2021).


    Google Scholar
     

  • Lai, Y., Masatoshi, H., Ma, Y., Guo, Y. & Zhang, B. Role of Vitamin K in Intestinal Health. Front. Immunol. 12, 791565 (2022).


    Google Scholar
     

  • Ceratto, S. & Savino, F. Vitamin K deficiency bleeding in an apparently healthy newborn infant: the compelling need for evidence-based recommendation. Italian J. Pediatrics 45, 30 (2019).


    Google Scholar
     

  • Kovács, P. et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer. Cancers 11, 1255 (2019).


    Google Scholar
     

  • Shen, Y. et al. Association between the circulating very long-chain saturated fatty acid and cognitive function in older adults: findings from the NHANES. BMC Public Health 24, 1061 (2024).


    Google Scholar
     

  • Huang, Y.-L., Chassard, C., Hausmann, M., von Itzstein, M. & Hennet, T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat. Commun. 6, 8141 (2015).


    Google Scholar
     

  • Nichols, N. L. & Bertolo, R. F. Luminal threonine concentration acutely affects intestinal mucosal protein and mucin synthesis in piglets. J. Nutrition 138, 1298–1303 (2008).


    Google Scholar
     

  • Fukumoto, K. et al. Excess S-adenosylmethionine inhibits methylation via catabolism to adenine. Commun. Biol. 5, 313 (2022).


    Google Scholar
     

  • Diwan, V., Brown, L. & Gobe, G. C. Adenine-induced chronic kidney disease in rats. Nephrology 23, 5–11 (2018).


    Google Scholar
     

  • Chiazza, F. et al. Protective effects of pyridoxamine supplementation in the early stages of diet-induced kidney dysfunction. BioMed Res. Int. 2017, 2682861 (2017).


    Google Scholar
     

  • Rais, N., Ved, A., Shadab, M., Ahmad, D. & Shahid, M. Taurine, a non-proteinous essential amino acid for human body systems: an overview. Arab Gulf J. Sci. Res. 41, 48–66 (2022).


    Google Scholar
     

  • Kamaruzzaman, M. et al. In vitro and in silico approach of fungal growth inhibition by Trichoderma asperellum HbGT6-07 derived volatile organic compounds. Arabian J. Chem. 14, 103290 (2021).


    Google Scholar
     

  • Zhang, X., Tang, X. & Daly, T. M. A one-step NIST traceable HPLC method for quantitation of vitamin B6 and 4-pyridoxic acid in human plasma. Practical Lab. Med. 21, 21–e00160 (2020).


    Google Scholar
     

  • Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Biomed. Anal. 6, 71–79 (2016).


    Google Scholar
     

  • Tsai, T.-H. et al. LC-MS/MS-based serum proteomics for identification of candidate biomarkers for hepatocellular carcinoma. PROTEOMICS 15, 2369–2381 (2015).


    Google Scholar
     

  • Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications 10, 1523 (2019).


    Google Scholar
     

  • Song, C., Zhou, B., Yi, H. & Wu, Y. Antibacterial activity of tannins from Pericarpium Granati(TPG) and its antibacterial mechanism against Staphylococcus aureus. Chinese Journal of Hospital Pharmacy 36, 259-265 (2016).

  • Liu Ruijie, X. X. et al. Effect of Phospholipase C on the Cell Membrane Permeability of Escherichia coli. Modern Food Sci. Technol. 31, 32–36 (2015).


    Google Scholar
     

  • Jie-hao MY-j, C. H. E. N. et al. Study on the antibacterial mechanism of alpinetin against fish-derived drug-resistant aeromonas hydrophila in vitro. Biotechnol. Bull. 37, 103–110 (2021).


    Google Scholar
     

  • Vasudevan, P., Nair, M. K. M., Annamalai, T. & Venkitanarayanan, K. S. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet. Microbiol. 92, 179–185 (2003).


    Google Scholar
     

  • Li, Ye D.X. et al. Study on the inhibitory effect of lonicera japonica extract on the secretion activity of staphylococcus aureus α-hemolysin. Chinese J. Vet. Sci. 33, 404–408 (2013).

  • Wang Shuaiqing, X. L. & Ji, Z. Antibacterial effect of emodin on aeromonas hydrophila and its mechanism. Chinese J. Vet. Med. 59, 140−146 (2023).

  • Niu, L. et al. Diversity, abundance and distribution characteristics of potential polyethylene and polypropylene microplastic degradation bacterial communities in the urban river. Water Res. 232, 119704 (2023).


    Google Scholar
     

  • Liu, W., Wang, H., Pang, X., Yao, W. & Gao, X. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 46, 451–457 (2010).


    Google Scholar
     

  • Lian, C.-A., Zhu, F.-C., Wei, Z.-F. & He, L.-S. Composition and potential functions of the dominant microbiota in deep-sea hagfish gut from the South China Sea. Deep Sea Res. Part I. Oceanogr. Res. Papers 169, 103488 (2021).


    Google Scholar
     

  • Evans, A., Bridgewater, B., Liu, Q., Mitchell, M. W. & Miller, L. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 4, 132 (2014).


    Google Scholar