Nguyen, B. & Tolia, N. H. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 6, 70 (2021).
Noad, R. & Roy, P. Virus-like particles as immunogens. Trends Microbiol. 11, 438–444 (2003).
Chackerian, B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines 6, 381–390 (2007).
Roldao, A., Mellado, M. C., Castilho, L. R., Carrondo, M. J. & Alves, P. M. Virus-like particles in vaccine development. Expert Rev. Vaccines 9, 1149–1176 (2010).
Kushnir, N., Streatfield, S. J. & Yusibov, V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31, 58–83 (2012).
Tissot, A. C. et al. Versatile virus-like particle carrier for epitope based vaccines. PLoS ONE 5, e9809 (2010).
Janitzek, C. M. et al. Bacterial superglue generates a full-length circumsporozoite protein virus-like particle vaccine capable of inducing high and durable antibody responses. Malar. J. 15, 545 (2016).
Singh, S. K. et al. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display. Vaccine 35, 3726–3732 (2017).
Gilbert, S. C. et al. A protein particle vaccine containing multiple malaria epitopes. Nat. Biotechnol. 15, 1280–1284 (1997).
Schirmbeck, R. et al. Priming of class I-restricted cytotoxic T lymphocytes by vaccination with recombinant protein antigens. Vaccine 13, 857–865 (1995).
Schneider, C. G. et al. Norovirus-VLPs expressing pre-erythrocytic malaria antigens induce functional immunity against sporozoite infection. Vaccine 40, 4270–4280 (2022).
Constantin, C., Pisani, A., Bardi, G. & Neagu, M. Nano-carriers of COVID-19 vaccines: the main pillars of efficacy. Nanomedicine 16, 2377–2387 (2021).
Maxmen, A. Scientists hail historic malaria vaccine approval—but point to challenges ahead. Nature https://doi.org/10.1038/d41586-021-02755-5 (2021).
Laurens, M. B. RTS,S/AS01 vaccine (Mxosquirix): an overview. Hum. Vaccin. Immunother. 16, 480–489 (2020).
Cohen, J., Nussenzweig, V., Nussenzweig, R., Vekemans, J. & Leach, A. From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum. Vaccin. 6, 90–96 (2010).
Rts, S. C. T. P. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015).
Bejon, P. et al. Efficacy of RTS,S malaria vaccines: individual-participant pooled analysis of phase 2 data. Lancet Infect. Dis. 13, 319–327 (2013).
White, M. T. et al. Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect. Dis. 15, 1450–1458 (2015).
White, M. T. et al. A combined analysis of immunogenicity, antibody kinetics and vaccine efficacy from phase 2 trials of the RTS,S malaria vaccine. BMC Med. 12, 117 (2014).
Datoo, M. S. et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet 397, 1809–1818 (2021).
Birkett, A., Miller, R. S. & Soisson, L. A. The importance of exercising caution when comparing results from malaria vaccines administered on the EPI schedule and on a seasonal schedule. Am. J. Trop. Med. Hyg. 107, 1356 (2022).
Kariu, T., Ishino, T., Yano, K., Chinzei, Y. & Yuda, M. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol. Microbiol. 59, 1369–1379 (2006).
Mehrizi, A. A., Torabi, F., Zakeri, S. & Djadid, N. D. Limited genetic diversity in the global Plasmodium vivax cell traversal protein of ookinetes and sporozoites (CelTOS) sequences; implications for PvCelTOS-based vaccine development. Infect. Genet. Evol. 53, 239–247 (2017).
Bergmann-Leitner, E. S. et al. Immunization with pre-erythrocytic antigen CelTOS from Plasmodium falciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei. PLoS ONE 5, e12294 (2010).
Doolan, D. L. et al. Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc. Natl Acad. Sci. USA 100, 9952–9957 (2003).
Kumar, H. et al. Implications of conformational flexibility, lipid binding, and regulatory domains in cell traversal-protein CelTOS for apicomplexan migration. J. Biol. Chem. 298, 102241 (2022).
Tang, W. K. et al. Multistage protective anti-CelTOS monoclonal antibodies with cross-species sterile protection against malaria. Nat. Commun. 15, 7487 (2024).
Jimah, J. R. et al. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption. eLife 5, e20621 (2016).
Kumar, H. & Tolia, N. H. Getting in: the structural biology of malaria invasion. PLoS Pathog. 15, e1007943 (2019).
Kumar, H. et al. Implications of conformational flexibility, lipid binding, and regulatory domains in cell-traversal protein CelTOS for apicomplexan migration. J. Biol. Chem. 298, 102241 (2022).
Aidoo, M. & Udhayakumar, V. Field studies of cytotoxic T lymphocytes in malaria infections: implications for malaria vaccine development. Parasitol. Today 16, 50–56 (2000).
Romero, P. et al. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341, 323–326 (1989).
Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334, 475–480 (2011).
Reece, W. H. H. et al. A CD4+ T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat. Med. 10, 406–410 (2004).
Hoffman, S. L. & Doolan, D. L. Malaria vaccines-targeting infected hepatocytes. Nat. Med. 6, 1218–1219 (2000).
Flicker, K. et al. Structural and thermodynamic insights into the assembly of the heteromeric pyridoxal phosphate synthase from Plasmodium falciparum. J. Mol. Biol. 374, 732–748 (2007).
Neuwirth, M., Flicker, K., Strohmeier, M., Tews, I. & Macheroux, P. Thermodynamic characterization of the protein–protein interaction in the heteromeric Bacillus subtilis pyridoxalphosphate synthase. Biochemistry 46, 5131–5139 (2007).
Mittenhuber, G. Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J. Mol. Microbiol. Biotechnol. 3, 1–20 (2001).
Aleshin, V. A. & Bunik, V. I. Protein–protein interfaces as druggable targets: a common motif of the pyridoxal-5’-phosphate-dependent enzymes to receive the coenzyme from its producers. Biochemistry 88, 1022–1033 (2023).
Strohmeier, M. et al. Structure of a bacterial pyridoxal 5′-phosphate synthase complex. Proc. Natl Acad. Sci. USA 103, 19284–19289 (2006).
Guedez, G. et al. Assembly of the eukaryotic PLP-synthase complex from Plasmodium and activation of the Pdx1 enzyme. Structure 20, 172–184 (2012).
Smith, A. M., Brown, W. C., Harms, E. & Smith, J. L. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase. J. Biol. Chem. 290, 5226–5239 (2015).
Zein, F. et al. Structural insights into the mechanism of the PLP synthase holoenzyme from Thermotoga maritima. Biochemistry 45, 14609–14620 (2006).
Robinson, G. C., Kaufmann, M., Roux, C. & Fitzpatrick, T. B. Structural definition of the lysine swing in Arabidopsis thaliana PDX1: intermediate channeling facilitating vitamin B6 biosynthesis. Proc. Natl Acad. Sci. USA 113, E5821–E5829 (2016).
Rodrigues, M. J. et al. Trapping and structural characterisation of a covalent intermediate in vitamin B6 biosynthesis catalysed by the Pdx1 PLP synthase. RSC Chem. Biol. 3, 227–230 (2022).
Robinson, G. C. et al. Crystal structure of the pseudoenzyme PDX1.2 in complex with its cognate enzyme PDX1.3: a total eclipse. Acta Crystallogr. D 75, 400–415 (2019).
Pholcharee, T. et al. Structural and biophysical correlation of anti-NANP antibodies with in vivo protection against P. falciparum. Nat. Commun. 12, 1063 (2021).
Livingstone, M. C. et al. In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Sci. Rep. 11, 5318 (2021).
Kusi, K. A. et al. Identification of Plasmodium falciparum circumsporozoite protein-specific CD8+ T cell epitopes in a malaria exposed population. PLoS ONE 15, e0228177 (2020).
Moris, P., Jongert, E. & van der Most, R. G. Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. Hum. Vaccin. Immunother. 14, 17–27 (2018).
Olotu, A. et al. Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N. Engl. J. Med. 368, 1111–1120 (2013).
Oyen, D. et al. Cryo-EM structure of P. falciparum circumsporozoite protein with a vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. Sci. Adv. 4, eaau8529 (2018).
Oyen, D. et al. Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc. Natl Acad. Sci. USA 114, E10438–E10445 (2017).
Triller, G. et al. Natural parasite exposure induces protective human anti-malarial antibodies. Immunity 47, 1197–1209.e10 (2017).
Langowski, M. D. et al. Optimization of a Plasmodium falciparum circumsporozoite protein repeat vaccine using the tobacco mosaic virus platform. Proc. Natl Acad. Sci. USA 117, 3114–3122 (2020).
Kisalu, N. K. et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat. Med. 24, 408–416 (2018).
Wang, L. T. et al. A potent anti-malarial human monoclonal antibody targets circumsporozoite protein minor repeats and neutralizes sporozoites in the liver. Immunity 53, 733–744.e8 (2020).
Birkett, A. et al. A modified hepatitis B virus core particle containing multiple epitopes of the Plasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in rodent and primate hosts. Infect. Immun. 70, 6860–6870 (2002).
Brune, K. D. et al. Plug-and-display: decoration of virus-like particles via isopeptide bonds for modular immunization. Sci. Rep. 6, 19234 (2016).
Bruun, T. U. J., Andersson, A. C., Draper, S. J. & Howarth, M. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination. ACS Nano 12, 8855–8866 (2018).
Hickey, J. M. et al. PfCSP–ferritin nanoparticle malaria vaccine antigen formulated with aluminum-salt and CpG 1018(R) adjuvants: preformulation characterization, antigen-adjuvant interactions, and mouse immunogenicity studies. Hum. Vaccin. Immunother. 21, 2460749 (2025).
Kaba, S. A. et al. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine. PLoS ONE 7, e48304 (2012).
Khan, F. et al. Head-to-head comparison of soluble vs. Qbeta VLP circumsporozoite protein vaccines reveals selective enhancement of NANP repeat responses. PLoS ONE 10, e0142035 (2015).
Kurtovic, L. et al. Novel virus-like particle vaccine encoding the circumsporozoite protein of Plasmodium falciparum is immunogenic and induces functional antibody responses in mice. Front. Immunol. 12, 641421 (2021).
Ludwig, J. et al. Glycosylated nanoparticle-based PfCSP vaccine confers long-lasting antibody responses and sterile protection in mouse malaria model. NPJ Vaccines 8, 52 (2023).
McCoy, M. E. et al. Mechanisms of protective immune responses induced by the Plasmodium falciparum circumsporozoite protein-based, self-assembling protein nanoparticle vaccine. Malar. J. 12, 136 (2013).
Thrane, S. et al. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J. Nanobiotechnology 14, 30 (2016).
Urakami, A. et al. Development of a novel virus-like particle vaccine platform that mimics the immature form of alphavirus. Clin. Vaccine Immunol. 24, e00090-17 (2017).
Rojas, M. et al. Molecular mimicry and autoimmunity. J. Autoimmun. 95, 100–123 (2018).
Weiss, W. R., Sedegah, M., Beaudoin, R. L., Miller, L. H. & Good, M. F. CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc. Natl Acad. Sci. USA 85, 573–576 (1988).
White, K. L., Snyder, H. L. & Krzych, U. MHC class I-dependent presentation of exoerythrocytic antigens to CD8+ T lymphocytes is required for protective immunity against Plasmodium berghei. J. Immunol. 156, 3374–3381 (1996).
Locke, E. et al. Establishing RTS,S/AS01 as a benchmark for comparison to next-generation malaria vaccines in a mouse model. NPJ Vaccines 9, 29 (2024).
Collins, K. A., Snaith, R., Cottingham, M. G., Gilbert, S. C. & Hill, A. V. S. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci. Rep. 7, 46621 (2017).
Ullah, N. et al. Solution structures and dynamic assembly of the 24-meric plasmodial Pdx1–Pdx2 complex. Int. J. Mol. Sci. 21, 5971 (2020).
Barra, A. L. C. et al. Structural dynamics and perspectives of vitamin B6 biosynthesis enzymes in Plasmodium: advances and open questions. Front. Cell. Infect. Microbiol. 11, 688380 (2021).
Knockel, J., Muller, I. B., Bergmann, B., Walter, R. D. & Wrenger, C. The apicomplexan parasite Toxoplasma gondii generates pyridoxal phosphate de novo. Mol. Biochem. Parasitol. 152, 108–111 (2007).
Dick, T., Manjunatha, U., Kappes, B. & Gengenbacher, M. Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Mol. Microbiol. 78, 980–988 (2010).
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
Gengenbacher, M. et al. Vitamin B6 biosynthesis by the malaria parasite Plasmodium falciparum: biochemical and structural insights. J. Biol. Chem. 281, 3633–3641 (2006).
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).
Salman, A. M. et al. Generation of transgenic rodent malaria parasites expressing human malaria parasite proteins. Methods Mol. Biol. 1325, 257–286 (2015).
Rodriguez-Galan, A. et al. An in vitro assay to measure antibody-mediated inhibition of P. berghei sporozoite invasion against P. falciparum antigens. Sci. Rep. 7, 17011 (2017).
Conteh, S. et al. Dynamics and outcomes of Plasmodium infections in Grammomys surdaster (Grammomys dolichurus) thicket rats versus inbred mice. Am. J. Trop. Med. Hyg. 103, 1893–1901 (2020).


















Leave a Reply