Cancer cachexia: molecular basis and therapeutic advances

Cancer cachexia: molecular basis and therapeutic advances

  • Argilés, J. M., Busquets, S., Stemmler, B. & López-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14, 754–762 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Baracos, V. E. et al. Cancer-associated cachexia. Nat. Rev. Dis. Prim. 4, 17105 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Prado, C. M., Cushen, S. J., Orsso, C. E. & Ryan, A. M. Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc. Nutr. Soc. 75, 188–198 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, L. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 31, 1539–1547 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Argilés, J. M., López-Soriano, F. J., Stemmler, B. & Busquets, S. Cancer-associated cachexia – understanding the tumor macroenvironment and microenvironment to improve management. Nat. Rev. Clin. Oncol. 20, 250–264 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bennani-Baiti, N. & Walsh, D. What is cancer anorexia-cachexia syndrome? A historical perspective. J. R. Coll. Physicians Edinb. 39, 257–262 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Schmidt, S. F., Rohm, M., Herzig, S. & Berriel Diaz, M. Cancer Cachexia: more than skeletal muscle wasting. Trends Cancer 4, 849–860 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumors, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ganguly, K. & Kimmelman, A. C. Reprogramming of tissue metabolism during cancer metastasis. Trends Cancer 9, 461–471 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fearon, K. C., Glass, D. J. & Guttridge, D. C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16, 153–166 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Strassmann, G., Fong, M., Kenney, J. S. & Jacob, C. O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Investig. 89, 1681–1684 (1992).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliff, A. et al. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50, 555–563 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Mottini, C. et al. The cross-talk between the macro and micro-environment in precursor lesions of pancreatic cancer leads to new and promising circulating biomarkers. J. Exp. Clin. Cancer Res. 43, 198 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Arai, H. et al. Diagnosis and outcomes of cachexia in Asia: working Consensus Report from the Asian Working Group for Cachexia. J. Cachexia Sarcopenia Muscle 14, 1949–1958 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, H. et al. AWGC2023 cachexia consensus as a valuable tool for predicting prognosis and burden in Chinese patients with cancer. J. Cachexia Sarcopenia Muscle 15, 2084–2093 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. M. et al. Characteristics and prognostic impact of cancer cachexia defined by the Asian Working Group for Cachexia consensus in patients with curable gastric cancer. Clin. Nutr. 43, 1524–1531 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Vigano, A., Del Fabbro, E., Bruera, E. & Borod, M. The cachexia clinic: from staging to managing nutritional and functional problems in advanced cancer patients. Crit. Rev. Oncog. 17, 293–303 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Douglas, E. & McMillan, D. C. Towards a simple objective framework for the investigation and treatment of cancer cachexia: the Glasgow Prognostic Score. Cancer Treat. Rev. 40, 685–691 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, G. A. D., Wiegert, E. V. M., Calixto-Lima, L. & Oliveira, L. C. Clinical utility of the modified Glasgow Prognostic Score to classify cachexia in patients with advanced cancer in palliative care. Clin. Nutr. 39, 1587–1592 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, Z. C. et al. Longitudinal body composition identifies hepatocellular carcinoma with cachexia following combined immunotherapy and target therapy (CHANCE2213). J. Cachexia Sarcopenia Muscle 15, 2705–2716 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anker, M. S. et al. Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J. Cachexia Sarcopenia Muscle 10, 22–34 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Cancer cachexia statistics in China. Precision Nutrition. 1, https://doi.org/10.1097/PN1099.0000000000000008 (2022).

  • Latenstein, A. E. J. et al. Cachexia, dietetic consultation, and survival in patients with pancreatic and periampullary cancer: a multicenter cohort study. Cancer Med. 9, 9385–9395 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeda, T. et al. The impact of cachexia and sarcopenia in elderly pancreatic cancer patients receiving palliative chemotherapy. Int. J. Clin. Oncol. 26, 1293–1303 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hou, Y. C. et al. The differential clinical impacts of cachexia and sarcopenia on the prognosis of advanced pancreatic cancer. Cancers. 14, 3137 (2022).

  • Furuse, J. et al. Effect of cancer cachexia on first-line chemotherapy in patients with advanced pancreatic cancer: a claims database study in Japan. Int. J. Clin. Oncol. 29, 456–463 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukuya, T. et al. Epidemiology, risk factors and impact of cachexia on patient outcome: results from the Japanese Lung Cancer Registry Study. J. Cachexia Sarcopenia Muscle 14, 1274–1285 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roch, B. et al. Cachexia – sarcopenia as a determinant of disease control rate and survival in non-small lung cancer patients receiving immune-checkpoint inhibitors. Lung Cancer 143, 19–26 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, C. A. et al. Nutrition impact symptoms: noteworthy prognostic indicators for lung cancer. Clin. Nutr. 42, 550–558 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Miura, K. et al. Impact of cachexia and first-line systemic therapy for previously untreated advanced non-small cell lung cancer: NEJ050A. J. Cachexia Sarcopenia Muscle 15, 2618–2628 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Cancer cachexia as a predictor of adverse outcomes in patients with non-small cell lung cancer: a meta-analysis. Clin. Nutr. 43, 1618–1625 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kawachi, H. et al. Clinical impact of cancer cachexia on the outcome of patients with non-small cell lung cancer with PD-L1 tumor proportion scores of ≥50% receiving pembrolizumab monotherapy versus immune checkpoint inhibitor with chemotherapy. Oncoimmunology 14, 2442116 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • White, R. et al. Determining the prevalence and severity of cancer cachexia in advanced non-small cell lung cancer and its relationship with chemotherapy outcomes. Support. Care Cancer 28, 4373–4380 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Effect of longitudinal changes of cachexia on the efficacy and toxicity of immune checkpoint inhibitors in esophageal squamous cell cancer (ESCC) patients. Nutrition 124, 112462 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Dijksterhuis, W. P. M. et al. Cachexia and dietetic interventions in patients with esophagogastric cancer: a multicenter cohort study. J. Natl Compr. Canc. Netw. 19, 144–152 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, L. R. et al. Comparison between single- and multi-slice computed tomography body composition analysis in patients with oesophagogastric cancer. J. Cachexia Sarcopenia Muscle 16, e13673 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, L. R. et al. The prognostic impact of pre-treatment cachexia in resectional surgery for oesophagogastric cancer: a meta-analysis and meta-regression. Br. J. Surg. 110, 1703–1711 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olaechea, S. et al. Race, ethnicity, and socioeconomic factors as determinants of cachexia incidence and outcomes in a retrospective cohort of patients with gastrointestinal tract cancer. JCO Oncol. Pract. 19, 493–500 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, G. T. et al. Prognostic value of systemic inflammation and for patients with colorectal cancer cachexia. J. Cachexia Sarcopenia Muscle 14, 2813–2823 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molfino, A. et al. Histomorphological and inflammatory changes of white adipose tissue in gastrointestinal cancer patients with and without cachexia. J. Cachexia Sarcopenia Muscle 13, 333–342 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, E. W. et al. The association of body composition phenotypes before chemotherapy with epithelial ovarian cancer mortality. J. Natl. Cancer Inst. 116, 1513–1524 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rich, N. E. et al. Cachexia is prevalent in patients with hepatocellular carcinoma and associated with worse prognosis. Clin. Gastroenterol. Hepatol. 20, e1157–e1169 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kordes, M., Larsson, L., Engstrand, L. & Löhr, J. M. Pancreatic cancer cachexia: three dimensions of a complex syndrome. Br. J. Cancer 124, 1623–1636 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agate, L. et al. Nutrition in advanced thyroid cancer patients. Nutrients. 14, 1298 (2022).

  • Mäkitie, A. A. et al. Managing cachexia in head and neck cancer: a systematic scoping review. Adv. Ther. 39, 1502–1523 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, R. et al. Updates on the pathogenesis of advanced lung cancer-induced cachexia. Thorac. Cancer 10, 8–16 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Demark-Wahnefried, W., Campbell, K. L. & Hayes, S. C. Weight management and its role in breast cancer rehabilitation. Cancer 118, 2277–2287 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Association of systemic inflammation with survival in patients with cancer cachexia: results from a multicenter cohort study. J. Cachexia Sarcopenia Muscle 12, 1466–1476 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallard, J. et al. A single chemotherapy administration induces muscle atrophy, mitochondrial alterations and apoptosis in breast cancer patients. J. Cachexia Sarcopenia Muscle 15, 292–305 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibata, M. et al. A retrospective cohort study to investigate the incidence of cachexia during chemotherapy in patients with colorectal cancer. Adv. Ther. 37, 5010–5022 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Noun, L. L. The disease that caused weight loss in King David the Great. J. Gerontol. A Biol. Sci. Med. Sci. 59, 143–145 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Thibaut, M. M. et al. The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia. Gut Microbes 17, 2449586 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sah, R. P. et al. Phases of metabolic and soft tissue changes in months preceding a diagnosis of pancreatic Ductal Adenocarcinoma. Gastroenterology 156, 1742–1752 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Klatte, D. C. F. et al. Temporal trends in body composition and metabolic markers prior to diagnosis of pancreatic Ductal Adenocarcinoma. Clin. Gastroenterol. Hepatol. 22, 1830–1838.e1839 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Babic, A. et al. Adipose tissue and skeletal muscle wasting precede clinical diagnosis of pancreatic cancer. Nat. Commun. 14, 4317 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garattini, S. et al. Anorexia and cancer in animals and man. Cancer Treat. Rev. 7, 115–139 (1980).

    Article 
    PubMed 

    Google Scholar
     

  • Qi, Y. et al. Agrp-negative arcuate NPY neurons drive feeding under positive energy balance via altering leptin responsiveness in POMC neurons. Cell Metab. 35, 979–995.e977 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Dallmann, R. et al. The orally active melanocortin-4 receptor antagonist BL-6020/979: a promising candidate for the treatment of cancer cachexia. J. Cachexia Sarcopenia Muscle 2, 163–174 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, X. et al. Melanocortin-4 receptor antagonist TCMCB07 ameliorates cancer- and chronic kidney disease-associated cachexia. J. Clin. Investig. 130, 4921–4934 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sweeney, P., Gimenez, L. E., Hernandez, C. C. & Cone, R. D. Targeting the central melanocortin system for the treatment of metabolic disorders. Nat. Rev. Endocrinol. 19, 507–519 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Marks, D. L., Ling, N. & Cone, R. D. Role of the central melanocortin system in cachexia. Cancer Res. 61, 1432–1438 (2001).

    PubMed 

    Google Scholar
     

  • Mosialou, I. et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 543, 385–390 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olson, B. et al. Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nat. Commun. 12, 2057 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steward, T. Endocrinology-informed neuroimaging in eating disorders: GLP1, orexins, and psilocybin. Trends Mol. Med. 30, 321–323 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Borner, T., Liberini, C. G., Lutz, T. A. & Riediger, T. Brainstem GLP-1 signaling contributes to cancer anorexia-cachexia syndrome in the rat. Neuropharmacology 131, 282–290 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Navarro, I. B. K., Schraner, M. & Riediger, T. Brainstem prolactin-releasing peptide contributes to cancer anorexia-cachexia syndrome in rats. Neuropharmacology 180, 108289 (2020).

    Article 

    Google Scholar
     

  • Breit, S. N., Brown, D. A. & Tsai, V. W. The GDF15-GFRAL pathway in health and metabolic disease: friend or foe?. Annu. Rev. Physiol. 83, 127–151 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Braun, T. P. & Marks, D. L. Pathophysiology and treatment of inflammatory anorexia in chronic disease. J. Cachexia Sarcopenia Muscle 1, 135–145 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burfeind, K. G. et al. TRIF is a key inflammatory mediator of acute sickness behavior and cancer cachexia. Brain. Behav. Immun. 73, 364–374 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeom, E. et al. Tumor-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding neuropeptides via Lgr3/8 in the brain. Nat. Cell Biol. 23, 172–183 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Burfeind, K. G. et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. Elife 9, e54095 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bindels, L. B. et al. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukemic mice with cachexia. ISME J. 10, 1456–1470 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chrysostomou, D., Roberts, L. A., Marchesi, J. R. & Kinross, J. M. Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology 164, 198–213 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Puppa, M. J. et al. Gut barrier dysfunction in the Apc(Min/+) mouse model of colon cancer cachexia. Biochim. Biophys. Acta 1812, 1601–1606 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, H. et al. Eggshell membrane modulates gut microbiota to prevent murine pre-cachexia through suppression of T helper cell differentiation. J. Cachexia Sarcopenia Muscle 13, 2088–2101 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ubachs, J. et al. Gut microbiota and short-chain fatty acid alterations in cachectic cancer patients. J. Cachexia Sarcopenia Muscle 12, 2007–2021 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumas, J. F. et al. Efficiency of oxidative phosphorylation in liver mitochondria is decreased in a rat model of peritoneal carcinosis. J. Hepatol. 54, 320–327 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Pötgens, S. A. et al. Multi-compartment metabolomics and metagenomics reveal major hepatic and intestinal disturbances in cancer cachectic mice. J. Cachexia Sarcopenia Muscle 12, 456–475 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, A. et al. TSC22D4 is a molecular output of hepatic wasting metabolism. EMBO Mol. Med. 5, 294–308 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, Y. et al. Decreased liver B vitamin-related enzymes as a metabolic hallmark of cancer cachexia. Nat. Commun. 14, 6246 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zechner, R. et al. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15, 279–291 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Tamucci, K. A., Namwanje, M., Fan, L. & Qiang, L. The dark side of browning. Protein Cell 9, 152–163 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yin, X. et al. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct. Target Ther. 7, 324 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. GRP75 triggers white adipose tissue browning to promote cancer-associated cachexia. Signal Transduct. Target Ther. 9, 253 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohm, M. et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22, 1120–1130 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kir, S. et al. Tumor-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kir, S. et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 23, 315–323 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kahn, C. R., Wang, G. & Lee, K. Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Investig. 129, 3990–4000 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llovera, M. et al. Protein turnover in skeletal muscle of tumor-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Lett. 130, 19–27 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, A., Gallot, Y. S. & Freyssenet, D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J. Cachexia Sarcopenia Muscle 14, 1150–1167 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldridge, A. G. & O’Brien, T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ. 17, 4–13 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Bodine, S. C. & Baehr, L. M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307, E469–E484 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Castro, G. S. et al. Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle. Cancers 11, 1264 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, R. et al. Corylifol A ameliorates muscle atrophy by inhibiting TAOK1/p38-MAPK/FoxO3 pathway in cancer cachexia. J. Cachexia Sarcopenia Muscle 14, 2098–2113 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costelli, P., De Tullio, R., Baccino, F. M. & Melloni, E. Activation of Ca(2+)-dependent proteolysis in skeletal muscle and heart in cancer cachexia. Br. J. Cancer 84, 946–950 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z. et al. Acetyl-Coenzyme A Synthetase 2 Potentiates Macropinocytosis and muscle wasting through metabolic reprogramming in pancreatic cancer. Gastroenterology 163, 1281–1293.e1281 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Marino, S. et al. Paradoxical effects of JZL184, an inhibitor of monoacylglycerol lipase, on bone remodeling in healthy and cancer-bearing mice. EBioMedicine 44, 452–466 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hain, B. A. et al. Zoledronic acid improves muscle function in healthy mice treated with chemotherapy. J. Bone Min. Res. 35, 368–381 (2020).

    Article 

    Google Scholar
     

  • Essex, A. L. et al. Bisphosphonate treatment ameliorates chemotherapy-induced bone and muscle abnormalities in young mice. Front. Endocrinol.10, 809 (2019).

    Article 

    Google Scholar
     

  • Bonetto, A. et al. Differential bone loss in mouse models of colon cancer cachexia. Front. Physiol. 7, 679 (2016).

    PubMed 

    Google Scholar
     

  • Pin, F. et al. Non-bone metastatic cancers promote osteocyte-induced bone destruction. Cancer Lett. 520, 80–90 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pin, F. et al. RANKL blockade reduces cachexia and bone loss induced by non-metastatic ovarian cancer in mice. J. Bone Min. Res. 37, 381–396 (2022).

    Article 

    Google Scholar
     

  • Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, J. et al. Bone marrow homeostasis is impaired via JAK/STAT and glucocorticoid signaling in cancer cachexia Model. Cancers 13, 1059 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, B. et al. Inhibition of TGFβ improves hematopoietic stem cell niche and ameliorates cancer-related anemia. Stem Cell. Res. Ther. 12, 65 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Severinsen, M. C. K. & Pedersen, B. K. Muscle-organ crosstalk: the emerging roles of myokines. Endocr. Rev. 41, 594–609 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morais, L. H., Schreiber, H. L. 4th & Mazmanian, S. K. The gut microbiota-brain axis in behavior and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Lipopolysaccharide-induced hypothalamic inflammation in cancer cachexia-anorexia is amplified by tumor-derived prostaglandin E2. J. Cachexia Sarcopenia Muscle 13, 3014–3027 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suda, Y. et al. Peripheral-central network analysis of cancer cachexia status accompanied by the polarization of hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. Mol. Brain. 17, 20 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, J., Ding, Y., Wang, L. & Xiao, Y. Gut microbiome improves postoperative cognitive function by decreasing permeability of the blood-brain barrier in aged mice. Brain Res. Bull. 164, 249–256 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Khatib, M. N. et al. Ghrelin for the management of cachexia associated with cancer. Cochrane Database Syst. Rev. 2, Cd012229 (2018).

    PubMed 

    Google Scholar
     

  • Wang, C. et al. The relationship of appetite-regulating hormones in the development of cardiac cachexia. Int. Heart J. 60, 384–391 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, Y. K. et al. Effect of Sipjeondaebo-tang on cancer-induced anorexia and cachexia in CT-26 tumor-bearing mice. Mediators Inflamm. 2014, 736563 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Systematic characterization of the disruption of intestine during liver tumor progression in the xmrk oncogene transgenic zebrafish model. Cells 11, 1810 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • das Neves, R. X. et al. Cachexia causes time-dependent activation of the inflammasome in the liver. J. Cachexia Sarcopenia Muscle 14, 1621–1630 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Modica, S. et al. Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology 142, 355–365 (2012). e351-354.

    Article 
    PubMed 

    Google Scholar
     

  • Feng, L. et al. Bile acid metabolism dysregulation associates with cancer cachexia: roles of liver and gut microbiome. J. Cachexia Sarcopenia Muscle 12, 1553–1569 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thibaut, M. M. et al. Bile acid dysregulation is intrinsically related to cachexia in tumor-bearing mice. Cancers 13, 6389 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, F. et al. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes 12, 1–24 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dolly, A. et al. Impairment of aryl hydrocarbon receptor signaling promotes hepatic disorders in cancer cachexia. J. Cachexia Sarcopenia Muscle 14, 1569–1582 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. Y. et al. Polysaccharide of ganoderma lucidum ameliorates cachectic myopathy induced by the combination cisplatin plus docetaxel in mice. Microbiol Spectr. 11, e0313022 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94, 58–65 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakakida, T. et al. Water-soluble dietary fiber alleviates cancer-induced muscle wasting through changes in gut microenvironment in mice. Cancer Sci. 113, 1789–1800 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, Y. et al. Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signaling. Ann. Med. 53, 508–522 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, W. et al. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome 10, 94 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pekkala, S. et al. Blocking activin receptor ligands is not sufficient to rescue cancer-associated gut Microbiota-A role for gut microbial flagellin in colorectal cancer and cachexia?. Cancers 11, 1799 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa, R. G. F. et al. Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa. J. Cachexia Sarcopenia Muscle 10, 1116–1127 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn, L. S. et al. Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am. J. Physiol. Endocrinol. Metab. 296, E191–E202 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Molanouri Shamsi, M. et al. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine 90, 100–108 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Loumaye, A. et al. Role of Activin A and myostatin in human cancer cachexia. J. Clin. Endocrinol. Metab. 100, 2030–2038 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Franz, K. et al. Higher serum levels of fibroblast growth factor 21 in old patients with cachexia. Nutrition 63-64, 81–86 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, T. et al. Mitophagy directs muscle-adipose crosstalk to alleviate dietary obesity. Cell Rep. 23, 1357–1372 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lemecha, M. et al. Lcn2 mediates adipocyte-muscle-tumor communication and hypothermia in pancreatic cancer cachexia. Mol. Metab. 66, 101612 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campderrós, L. et al. Brown adipocytes secrete GDF15 in response to thermogenic activation. Obesity 27, 1606–1616 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki, H. et al. Clinical and tumor characteristics of patients with high serum levels of growth differentiation factor 15 in advanced pancreatic cancer. Cancers. 13, 4842 (2021).

  • Rupert, J. E. et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J. Exp. Med. 218, e20190450 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, M. S. et al. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl. Acad. Sci. USA 117, 2751–2760 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waning, D. L. et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat. Med. 21, 1262–1271 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, H., Grimston, S., Civitelli, R. & Thomopoulos, S. Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J. Bone Min. Res. 30, 596–605 (2015).

    Article 

    Google Scholar
     

  • Bonnet, N. et al. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J. Clin. Investig. 129, 3214–3223 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dankbar, B. et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat. Med. 21, 1085–1090 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kitase, Y. et al. β-aminoisobutyric Acid, l-BAIBA, is a muscle-derived osteocyte survival factor. Cell Rep. 22, 1531–1544 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engeli, S. Central and peripheral cannabinoid receptors as therapeutic targets in the control of food intake and body weight. Handb. Exp. Pharmacol. 209, 357–381 (2012).

  • Molfino, A., Gioia, G., Rossi Fanelli, F. & Laviano, A. Contribution of neuroinflammation to the pathogenesis of cancer cachexia. Mediators Inflamm. 2015, 801685 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernstein, I. L. Neutral mediation of food aversions and anorexia induced by tumor necrosis factor and tumors. Neurosci. Biobehav. Rev. 20, 177–181 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Borner, T. et al. Anorexia-cachexia syndrome in hepatoma tumor-bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC-1/GDF15. J. Cachexia Sarcopenia Muscle 8, 417–427 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Piffar, P. M. et al. Naproxen, clenbuterol and insulin administration ameliorates cancer cachexia and reduce tumor growth in Walker 256 tumor-bearing rats. Cancer Lett. 201, 139–148 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Busquets, S. et al. Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer Res. 64, 6725–6731 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Suriben, R. et al. Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat. Med. 26, 1264–1270 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, H. et al. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc. Natl. Acad. Sci. USA 119, e2112840119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nukaga, S. et al. Combined administration of lauric acid and glucose improved cancer-derived cardiac atrophy in a mouse cachexia model. Cancer Sci. 111, 4605–4615 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, L. et al. 2-Deoxy-D-glucose alleviates cancer cachexia-induced muscle wasting by enhancing ketone metabolism and inhibiting the cori cycle. Cells 11, 2987 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeWys, W. D. Pathophysiology of cancer cachexia: current understanding and areas for future research. Cancer Res. 42, 721s–726s (1982).

    PubMed 

    Google Scholar
     

  • Baker, S. A. & Rutter, J. Metabolites as signaling molecules. Nat. Rev. Mol. Cell Biol. 24, 355–374 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, J. G. et al. Metabolic modulation of transcription: the role of one-carbon metabolism. Cell Chem. Biol. 29, (2022).

  • Nalbantoglu, S. & Karadag, A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: Paving the way toward integrative multiomics. J. Pharm. Biomed. Anal. 199, 114031 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rabinowitz, J. D. & Enerbäck, S. Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2, 566–571 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article 
    PubMed 

    Google Scholar
     

  • McGovern, J. et al. Lactate dehydrogenase: relationship with the diagnostic GLIM criterion for cachexia in patients with advanced cancer. Br. J. Cancer 128, 760–765 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Pin, F. et al. Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. J. Cachexia Sarcopenia Muscle 10, 140–154 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pin, F. et al. PDK4 drives metabolic alterations and muscle atrophy in cancer cachexia. FASEB J. 33, 7778–7790 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mannelli, M. et al. STAT3 signaling drives LDH Up-regulation and adiponectin down-regulation in cachectic adipocytes. Int. J. Mol. Sci. 24, 16343 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felmlee, M. A. et al. Monocarboxylate Transporters (SLC16): function, regulation, and role in health and disease. Pharmacol. Rev. 72, 466–485 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signaling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Silberbauer, C. J., Surina-Baumgartner, D. M., Arnold, M. & Langhans, W. Prandial lactate infusion inhibits spontaneous feeding in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R646–R653 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Activation of GPR81 by lactate drives tumor-induced cachexia. Nat. Metab. 6, 708–723 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikooie, R., Moflehi, D. & Zand, S. Lactate regulates autophagy through ROS-mediated activation of ERK1/2/m-TOR/p-70S6K pathway in skeletal muscle. J. Cell Commun. Signal 15, 107–123 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Q. et al. Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity. Nat. Commun. 13, 4981 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noe, J. T. et al. Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci. Adv. 7, eabi8602 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK Cells. Cell Metab. 24, 657–671 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Linares, J. F. et al. The lactate-NAD(+) axis activates cancer-associated fibroblasts by downregulating p62. Cell Rep. 39, 110792 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rastogi, S. et al. Lactate acidosis and simultaneous recruitment of TGF-β leads to alter plasticity of hypoxic cancer cells in tumor microenvironment. Pharm. Ther. 250, 108519 (2023).

    Article 

    Google Scholar
     

  • Mannelli, M. et al. Pyruvate prevents the onset of the cachectic features and metabolic alterations in myotubes downregulating STAT3 signaling. FASEB J. 36, e22598 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, X. et al. Pyruvate dehydrogenase B regulates myogenic differentiation via the FoxP1-Arih2 axis. J. Cachexia Sarcopenia Muscle 14, 606–621 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, M. J. et al. The role of pyruvate metabolism in mitochondrial quality control and inflammation. Mol. Cells 46, 259–267 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elia, I. et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8(+) T cells. Cell Metab. 34, 1137–1150.e1136 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu, Y. et al. Intervening pyruvate carboxylase stunts tumor growth by strengthening anti-tumor actions of tumor-associated macrophages. Signal Transduct. Target Ther. 7, 34 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenes, M. et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab. 34, 731–746.e739 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, P. et al. Metabolic profiling of tumors, sera, and skeletal muscles from an orthotopic murine model of gastric cancer associated-cachexia. J. Proteome Res. 18, 1880–1892 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ruiz, B. I. et al. Alpha-Ketoglutarate regulates Tnfrsf12a/Fn14 expression via histone modification and prevents cancer-induced cachexia. Genes. 14, 1818 (2023).

  • Tan, H. et al. Ketoglutaric acid can reprogram the immunophenotype of triple-negative breast cancer after radiotherapy and improve the therapeutic effect of anti-PD-L1. J. Transl. Med. 21, 462 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Z. et al. Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling. Cell. Mol. Immunol. 21, 448–465 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matias, M. I. et al. Regulatory T cell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Rep. 37, 109911 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flint, T. R. et al. Tumor-Induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab. 24, 672–684 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goncalves, M. D. et al. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proc. Natl. Acad. Sci. USA 115, E743–e752 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Renesse, J. et al. Tumor catabolism independent of malnutrition and inflammation in upper GI cancer patients revealed by longitudinal metabolomics. J. Cachexia Sarcopenia Muscle 14, 298–309 (2023).

    Article 

    Google Scholar
     

  • Mulligan, H. D. & Tisdale, M. J. Metabolic substrate utilization by tumor and host tissues in cancer cachexia. Biochem. J. 277, 321–326 (1991).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Exploring the therapeutic potential of Ethyl 3-hydroxybutyrate in alleviating skeletal muscle wasting in cancer cachexia. Biomolecules. 13, 1330 (2023).

  • Arneson-Wissink, P. C. et al. Hepatic signal transducer and activator of transcription-3 signaling drives early-stage pancreatic cancer cachexia via suppressed ketogenesis. J. Cachexia Sarcopenia Muscle 15, 975–988 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrer, M. et al. Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. Cell Metab. 35, 1147–1162.e1147 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, R. et al. Ketogenesis attenuates KLF5-dependent production of CXCL12 to overcome the immunosuppressive tumor microenvironment in colorectal cancer. Cancer Res. 82, 1575–1588 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luda, K. M. et al. Ketolysis drives CD8(+) T cell effector function through effects on histone acetylation. Immunity 56, 2021–2035.e2028 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosios, A. M. et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540–549 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabe, Y., Lorenzi, P. L. & Konopleva, M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood 134, 1014–1023 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J. Hematol. Oncol. 16, 59 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cala, M. P. et al. Multiplatform plasma fingerprinting in cancer cachexia: a pilot observational and translational study. J. Cachexia Sarcopenia Muscle 9, 348–357 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozzetti, F. & Bozzetti, V. Is the intravenous supplementation of amino acid to cancer patients adequate? A critical appraisal of literature. Clin. Nutr. 32, 142–146 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zea, A. H. et al. L-Arginine modulates CD3zeta expression and T-cell function in activated human T lymphocytes. Cell. Immunol. 232, 21–31 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Lian, G. et al. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T-cell differentiation. Elife. 7, e36158 (2018).

  • Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Investig. 130, 3865–3884 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinclair, L. V. et al. Antigen receptor control of methionine metabolism in T cells. Elife 8, e44210 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiménez-Alonso, J. J. & López-Lázaro, M. Dietary manipulation of amino acids for cancer therapy. Nutrients 15, 2879 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engelen, M. et al. High anabolic potential of essential amino acid mixtures in advanced non-small cell lung cancer. Ann. Oncol. 26, 1960–1966 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aliwa, B. et al. Altered gut microbiome, bile acid composition and metabolome in sarcopenia in liver cirrhosis. J. Cachexia Sarcopenia Muscle 14, 2676–2691 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. Bckdk-mediated branch chain amino acid metabolism reprogramming contributes to muscle atrophy during cancer cachexia. Mol. Nutr. Food Res. 68, e2300577 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Mora, S. & Adegoke, O. A. J. Maintenance of the branched-chain amino acid transporter LAT1 counteracts myotube atrophy following chemotherapy. Am. J. Physiol. Cell Physiol. 326, C866–c879 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Baek, M. O. et al. Self-transducible LRS-UNE-L peptide enhances muscle regeneration. J. Cachexia Sarcopenia Muscle 13, 1277–1288 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viana, L. R. et al. Leucine-rich diet improved muscle function in cachectic walker 256 tumor-bearing wistar rats. Cells. 10, 3272 (2021).

  • Toneto, A. T. et al. Nutritional leucine supplementation attenuates cardiac failure in tumor-bearing cachectic animals. J. Cachexia Sarcopenia Muscle 7, 577–586 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyaguti, N., Oliveira, S. C. P. & Gomes-Marcondes, M. C. C. Maternal leucine-rich diet minimizes muscle mass loss in tumor-bearing adult rat offspring by improving the balance of muscle protein synthesis and degradation. Biomolecules. 9, 229 (2019).

  • Salomão, E. M. & Gomes-Marcondes, M. C. Light aerobic physical exercise in combination with leucine and/or glutamine-rich diet can improve the body composition and muscle protein metabolism in young tumor-bearing rats. J. Physiol. Biochem. 68, 493–501 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Caperuto, E. C. et al. Beta-hydoxy-beta-methylbutyrate supplementation affects Walker 256 tumor-bearing rats in a time-dependent manner. Clin. Nutr. 26, 117–122 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, K. A., Lashinger, L. M., Rasmussen, A. J. & Hursting, S. D. Leucine supplementation differentially enhances pancreatic cancer growth in lean and overweight mice. Cancer Metab. 2, 6 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrems, E. R. et al. Leucine supplementation exacerbates morbidity in male but not female mice with colorectal cancer-induced cachexia. Nutrients 15, 4570 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lautaoja, J. H. et al. Muscle and serum metabolomes are dysregulated in colon-26 tumor-bearing mice despite amelioration of cachexia with activin receptor type 2B ligand blockade. Am. J. Physiol. Endocrinol. Metab. 316, E852–e865 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ninomiya, S. et al. Low levels of serum tryptophan underlie skeletal muscle atrophy. Nutrients. 12, 978 (2020).

  • Qiu, X. et al. Metabolic signatures and potential biomarkers for the diagnosis and treatment of colon cancer cachexia. Acta Biochim. Biophys. Sin. 55, 1913–1924 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunz, H. E. et al. Methylarginine metabolites are associated with attenuated muscle protein synthesis in cancer-associated muscle wasting. J. Biol. Chem. 295, 17441–17459 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunzke, T. et al. Derangements of amino acids in cachectic skeletal muscle are caused by mitochondrial dysfunction. J. Cachexia Sarcopenia Muscle 11, 226–240 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Cyst(e)ine in nutrition formulation promotes colon cancer growth and chemoresistance by activating mTORC1 and scavenging ROS. Signal Transduct. Target Ther. 6, 188 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kudamatsu, H. et al. Ameliorating effects of cystine and theanine in a cancer cachexia mouse model. J. Pharmacol. Sci. 152, 163–166 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Baumert, P. et al. Skeletal muscle hypertrophy rewires glucose metabolism: An experimental investigation and systematic review. J. Cachexia Sarcopenia Muscle 15, 989–1002 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sirniö, P. et al. Alterations in serum amino-acid profile in the progression of colorectal cancer: associations with systemic inflammation, tumor stage and patient survival. Br. J. Cancer 120, 238–246 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ham, D. J. et al. Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia. Clin. Nutr. 33, 448–458 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Posa, D. K. et al. Skeletal muscle analysis of cancer patients reveals a potential role for carnosine in muscle wasting. J. Cachexia Sarcopenia Muscle 14, 1802–1814 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tůma, P., Hložek, T., Kamišová, J. & Gojda, J. Monitoring of circulating amino acids in patients with pancreatic cancer and cancer cachexia using capillary electrophoresis and contactless conductivity detection. Electrophoresis 42, 1885–1891 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fracaro, L. et al. Walker 256 tumor-bearing rats demonstrate altered interstitial cells of Cajal. Effects on ICC in the Walker 256 tumor model. Neurogastroenterol. Motil. 28, 101–115 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Vicentini, G. E. et al. Does l-glutamine-supplemented diet extenuate NO-mediated damage on myenteric plexus of Walker 256 tumor-bearing rats?. Food Res. Int. 101, 24–34 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, L., Lu, R., Huang, C. & Lin, D. Taurine protects C2C12 myoblasts from impaired cell proliferation and myotube differentiation under cisplatin-induced ROS Exposure. Front. Mol. Biosci. 8, 685362 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deminice, R. et al. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats. Amino Acids 48, 2015–2024 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cella, P. S. et al. Creatine supplementation in Walker-256 tumor-bearing rats prevents skeletal muscle atrophy by attenuating systemic inflammation and protein degradation signaling. Eur. J. Nutr. 59, 661–669 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gramignano, G. et al. Efficacy of l-carnitine administration on fatigue, nutritional status, oxidative stress, and related quality of life in 12 advanced cancer patients undergoing anticancer therapy. Nutrition 22, 136–145 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. L-carnitine ameliorates cancer cachexia in mice by regulating the expression and activity of carnitine palmityl transferase. Cancer Biol. Ther. 12, 125–130 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Silvério, R., Laviano, A., Rossi Fanelli, F. & Seelaender, M. L-Carnitine induces recovery of liver lipid metabolism in cancer cachexia. Amino Acids 42, 1783–1792 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • de Carvalho, C. & Caramujo, M. J. The various roles of fatty acids. Molecules. 23, 2583 (2018).

  • Jin, C. et al. Low expression of ELOVL6 may be involved in fat loss in white adipose tissue of cancer-associated cachexia. Lipids Health Dis. 23, 144 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumpper-Fedus, K. et al. Altered plasma fatty acid abundance is associated with cachexia in treatment-naïve pancreatic cancer. Cells 11, 910 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. P. et al. The involvement and possible targeting of cardiolipins degradation and disturbed linoleic acid metabolism in cardiac atrophy under cancer cachexia. Eur. J. Pharmacol. 985, 177108 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Calder, P. C. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem. Soc. Trans. 45, 1105–1115 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Murphy, R. A. et al. Skeletal muscle depletion is associated with reduced plasma (n-3) fatty acids in non-small cell lung cancer patients. J. Nutr. 140, 1602–1606 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Colomer, R. et al. N-3 fatty acids, cancer and cachexia: a systematic review of the literature. Br. J. Nutr. 97, 823–831 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Burns, C. P. et al. Phase II study of high-dose fish oil capsules for patients with cancer-related cachexia. Cancer 101, 370–378 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Werner, K. et al. Dietary supplementation with n-3-fatty acids in patients with pancreatic cancer and cachexia: marine phospholipids versus fish oil – a randomized controlled double-blind trial. Lipids Health Dis. 16, 104 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitehouse, A. S., Smith, H. J., Drake, J. L. & Tisdale, M. J. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res. 61, 3604–3609 (2001).

    PubMed 

    Google Scholar
     

  • Whitehouse, A. S. & Tisdale, M. J. Increased expression of the ubiquitin-proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-kappaB. Br. J. Cancer 89, 1116–1122 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. H. et al. Docosahexaenoic acid-enriched phospholipids and eicosapentaenoic acid-enriched phospholipids inhibit tumor necrosis factor-alpha-induced lipolysis in 3T3-L1 adipocytes by activating sirtuin 1 pathways. Food Funct. 12, 4783–4796 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Freitas, R. D. S. et al. Targeting FFA1 and FFA4 receptors in cancer-induced cachexia. Am. J. Physiol. Endocrinol. Metab. 319, E877–e892 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, Y. et al. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediators Inflamm. 2021, 8879227 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Im, D. S. Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur. J. Pharmacol. 785, 36–43 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, S. et al. The ω-3 polyunsaturated fatty acid docosahexaenoic acid enhances NK-Cell antitumor effector functions. Cancer Immunol. Res. 12, 744–758 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munson, P. V. et al. Polyunsaturated fatty acid-bound α-Fetoprotein promotes immune suppression by altering human dendritic cell metabolism. Cancer Res. 83, 1543–1557 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kornfeld, S. et al. Reducing endothelial NOS activation and interstitial fluid pressure with n-3 PUFA offset tumor chemoresistance. Carcinogenesis 33, 260–267 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Mori, T. et al. Giving combined medium-chain fatty acids and glucose protects against cancer-associated skeletal muscle atrophy. Cancer Sci. 110, 3391–3399 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishida, R. et al. Differential effects of three medium-chain fatty acids on mitochondrial quality control and skeletal muscle maturation. Antioxidants. 13, 821 (2024).

  • Tisdale, M. J. & Brennan, R. A. A comparison of long-chain triglycerides and medium-chain triglycerides on weight loss and tumor size in a cachexia model. Br. J. Cancer 58, 580–583 (1988).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Pro-phagocytic function and structural basis of GPR84 signaling. Nat. Commun. 14, 5706 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. The metabolite butyrate produced by gut microbiota inhibits cachexia-associated skeletal muscle atrophy by regulating intestinal barrier function and macrophage polarization. Int. Immunopharmacol. 124, 111001 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11, 4457 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung, W. W. et al. Vitamin D repletion ameliorates adipose tissue browning and muscle wasting in infantile nephropathic cystinosis-associated cachexia. J. Cachexia Sarcopenia Muscle 11, 120–134 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, P. et al. Metabolic advantage of 25(OH)D(3) versus 1,25(OH)(2)D(3) supplementation in infantile nephropathic cystinosis-associated adipose tissue browning and muscle wasting. Cells. 11, 3264 (2022).

  • Hochwald, S. N. et al. Depletion of high energy phosphate compouds in the tumor-bearing state and reversal after tumor resection. Surgery 120, 534–541 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Konishi, M. et al. Febuxostat improves outcome in a rat model of cancer cachexia. J. Cachexia Sarcopenia Muscle 6, 174–180 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raun, S. H. et al. Adenosine monophosphate-activated protein kinase is elevated in human cachectic muscle and prevents cancer-induced metabolic dysfunction in mice. J. Cachexia Sarcopenia Muscle 14, 1631–1647 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltrà, M. et al. NAD(+) repletion with niacin counteracts cancer cachexia. Nat. Commun. 14, 1849 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. M. et al. Nicotinamide riboside vitamin B3 mitigated C26 adenocarcinoma-induced cancer cachexia. Front. Pharmacol. 12, 665493 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Moal, E. et al. Redox control of skeletal muscle regeneration. Antioxid. Redox Signal. 27, 276–310 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puig-Vilanova, E. et al. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic. Biol. Med. 79, 91–108 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gomes-Marcondes, M. C. & Tisdale, M. J. Induction of protein catabolism and the ubiquitin‒proteasome pathway by mild oxidative stress. Cancer Lett. 180, 69–74 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Min, K. et al. Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J. Physiol. 593, 2017–2036 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, P. L., Shavlakadze, T., Grounds, M. D. & Arthur, P. G. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. Int. J. Biochem. Cell Biol. 62, 72–79 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. & Bae, J. S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016, 6058147 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markov, S. D., Gonzalez, D. & Mehla, K. Preclinical models for studying the impact of macrophages on cancer cachexia. Curr. Protoc. Pharmacol. 91, e80 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odegaard, J. I. & Chawla, A. Type 2 responses at the interface between immunity and fat metabolism. Curr. Opin. Immunol. 36, 67–72 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. et al. M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1. Nat. Commun. 15, 1646 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, X. et al. M2 macrophage-derived TGF-β induces age-associated loss of adipogenesis through progenitor cell senescence. Mol. Metab. 84, 101943 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batista, M. L. Jr. et al. Cachexia-associated adipose tissue morphological rearrangement in gastrointestinal cancer patients. J. Cachexia Sarcopenia Muscle 7, 37–47 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Erdem, M. et al. Macrophages protect against loss of adipose tissue during cancer cachexia. J. Cachexia Sarcopenia Muscle 10, 1128–1142 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, S. K. et al. Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Lett. 484, 29–39 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia. Cancer Cell 42, 885–903.e884 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnston, A. J. et al. Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. Cell 162, 1365–1378 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tonkin, J. et al. Monocyte/Macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol. Ther. 23, 1189–1200 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pryce, B. R. et al. Muscle inflammation is regulated by NF-κB from multiple cells to control distinct states of wasting in cancer cachexia. Cell Rep. 43, 114925 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penafuerte, C. A. et al. Identification of neutrophil-derived proteases and angiotensin II as biomarkers of cancer cachexia. Br. J. Cancer 114, 680–687 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. L. et al. Integrated neutrophil-to-lymphocyte ratio and handgrip strength better predict survival in patients with cancer cachexia. Nutrition 122, 112399 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Ruan, G. T. et al. Association of systemic inflammation and overall survival in elderly patients with cancer cachexia – results from a multicenter study. J. Inflamm. Res. 14, 5527–5540 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, H. et al. Evaluation and validation of neutrophil to albumin ratio as a promising prognostic marker for all-cause mortality in patients with cancer: a multicenter cohort study. Nutrition 121, 112365 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, H. L. et al. The prognostic value of the combination of body composition and systemic inflammation in patients with cancer cachexia. J. Cachexia Sarcopenia Muscle 14, 879–890 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson, J. M., Feeback, K. D., Baas, J. H. & Pizza, F. X. Tumor necrosis factor-alpha promotes the accumulation of neutrophils and macrophages in skeletal muscle. J. Appl Physiol. 101, 1394–1399 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Petruzzelli, M. et al. Early Neutrophilia marked by aerobic glycolysis sustains host metabolism and delays cancer cachexia. Cancers. 14, 963 (2022).

  • Hayashi, Y. et al. IL36G-producing neutrophil-like monocytes promote cachexia in cancer. Nat. Commun. 15, 7662 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J. Hematol. Oncol. 16, 30 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narsale, A. et al. Cancer-driven changes link T-cell frequency to muscle strength in people with cancer: a pilot study. J. Cachexia Sarcopenia Muscle 10, 827–843 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju, J. E. et al. Potential role of immunological factors in early diagnosis of cancer cachexia in C26 tumor-bearing mice. Appl Biol. Chem. 62, 3 (2019).

    Article 

    Google Scholar
     

  • Collinson-Pautz, M. R. et al. Constitutively active MyD88/CD40 costimulation enhances expansion and efficacy of chimeric antigen receptor T cells targeting hematological malignancies. Leukemia 33, 2195–2207 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z., Zhao, C., Moya, R. & Davies, J. D. A novel role for CD4+ T cells in the control of cachexia. J. Immunol. 181, 4676–4684 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Anoveros-Barrera, A. et al. Immunohistochemical phenotyping of T cells, granulocytes, and phagocytes in the muscle of cancer patients: association with radiologically defined muscle mass and gene expression. Skelet. Muscle 9, 24 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaelis, K. A. et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 10, 4682 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baazim, H. et al. CD8(+) T cells induce cachexia during chronic viral infection. Nat. Immunol. 20, 701–710 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macciò, A. & Madeddu, C. Blocking inflammation to improve immunotherapy of advanced cancer. Immunology 159, 357–364 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gonda, K. et al. Multiple immunological mechanisms of cancer cachexia in patients with solid tumors. J. Clin. Oncol. 34, 667–667 (2016).

    Article 

    Google Scholar
     

  • Shibata, M. et al. Abstract 1285: Production of interleukin-17 is increased in patients with gastrointestinal cancer and correlates with immune suppression involving MDSC, nutritional impairment, and poor prognosis. Cancer Res. 75, 1285–1285 (2015).

    Article 

    Google Scholar
     

  • Yang, J. et al. Abstract 4695: dual targeting of MEK and PI3K pathways can act via tumor-intrinsic mechanisms to overcome resistance and tumor-extrinsic mechanisms to modulate immunity and limit cancer cachexia. Cancer Res. 75, 4695–4695 (2015).

    Article 

    Google Scholar
     

  • Cuenca, A. G. et al. Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia. J. Immunol. 192, 6111–6119 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Winfield, R. D. et al. Myeloid-derived suppressor cells in cancer cachexia syndrome: a new explanation for an old problem. JPEN J. Parenter. Enter. Nutr. 32, 651–655 (2008).

    Article 

    Google Scholar
     

  • Ghonim, M. A. et al. Targeting PARP-1 with metronomic therapy modulates MDSC suppressive function and enhances anti-PD-1 immunotherapy in colon cancer. J. Immunother. Cancer. 9, e001643 (2021).

  • Dzierlega, K. et al. Activin A-expressing polymorphonuclear myeloid-derived suppressor cells infiltrate skeletal and cardiac muscle and promote cancer cachexia. J. Immunol. 211, 497–507 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Deyhle, M. R. et al. Depleting Ly6G positive myeloid cells reduces pancreatic cancer-induced skeletal muscle atrophy. Cells 11, 1893 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • VanderVeen, B. N. et al. The complex heterogeneity of immune cell signatures across wasting tissues with C26 and 5-fluorouracil-induced cachexia. Am. J. Physiol. Cell Physiol. 326, C606–c621 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nissinen, T. A. et al. Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses. J. Cachexia Sarcopenia Muscle 9, 514–529 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lima, J. et al. Tumor-derived transforming growth factor-β signaling contributes to fibrosis in patients with cancer cachexia. J. Cachexia Sarcopenia Muscle 10, 1045–1059 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. circNOX4 activates an inflammatory fibroblast niche to promote tumor growth and metastasis in NSCLC via FAP/IL-6 axis. Mol. Cancer 23, 47 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, W. et al. CCL18 signaling from tumor-associated macrophages activates fibroblasts to adopt a chemoresistance-inducing phenotype. Oncogene 42, 224–237 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bruzzese, F. et al. Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15. Cancer Res. 74, 3408–3417 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Rettig, W. J. et al. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc. Natl. Acad. Sci. USA 85, 3110–3114 (1988).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 110, 20212–20217 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, L. et al. Antitumor efficacy and potential mechanism of FAP-targeted radioligand therapy combined with immune checkpoint blockade. Signal Transduct. Target Ther. 9, 142 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maishi, N. & Hida, K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108, 1921–1926 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inda, A. M. et al. Evaluation of angiogenesis with the expression of VEGF and CD34 in human non-small cell lung cancer. J. Exp. Clin. Cancer Res. 26, 375–378 (2007).

    PubMed 

    Google Scholar
     

  • Tichet, M. et al. Tumor-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signaling to promote metastasis. Nat. Commun. 6, 6993 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Husain, A., Hu, N., Sadow, P. M. & Nucera, C. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E). Cancer Lett. 380, 577–585 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hsu, B. G. et al. Association of endothelial dysfunction and peripheral arterial disease with sarcopenia in chronic kidney disease. J. Cachexia Sarcopenia Muscle 15, 1199–1208 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y.-M. et al. Skeletal muscle endothelial dysfunction through the activin A-PGC1α axis drives progression of cancer cachexia. Nat. Cancer 6, 1835–1845 (2025).

    Article 

    Google Scholar
     

  • Yang, S. et al. Functional effects of muscle PGC-1alpha in aged animals. Skelet. Muscle 10, 14 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banks, W. A. Anorectic effects of circulating cytokines: role of the vascular blood‒brain barrier. Nutrition 17, 434–437 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, M. et al. Endothelial peroxynitrite causes disturbance of neuronal oscillations by targeting caspase-1 in the arcuate nucleus. Redox Biol. 47, 102147 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, T., Liu, J., Dong, L. & Liu, J. The roles of P-selectin in cancer cachexia. Med. Oncol. 40, 338 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Taylor, J. et al. Endothelial Notch1 signaling in white adipose tissue promotes cancer cachexia. Nat. Cancer 4, 1544–1560 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klose, R. et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat. Commun. 7, 12528 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Widner, D. B. et al. Activated mast cells in skeletal muscle can be a potential mediator for cancer-associated cachexia. J. Cachexia Sarcopenia Muscle 12, 1079–1097 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, D. S. et al. Single-cell deconstruction of post-sepsis skeletal muscle and adipose tissue microenvironments. J. Cachexia Sarcopenia Muscle 11, 1351–1363 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Baazim, H., Antonio-Herrera, L. & Bergthaler, A. The interplay of immunology and cachexia in infection and cancer. Nat. Rev. Immunol. 22, 309–321 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yeh, S. S. & Schuster, M. W. Geriatric cachexia: the role of cytokines. Am. J. Clin. Nutr. 70, 183–197 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Scarlett, J. M. et al. Regulation of central melanocortin signaling by interleukin-1 beta. Endocrinology 148, 4217–4225 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Marks, D. L. et al. Differential role of melanocortin receptor subtypes in cachexia. Endocrinology 144, 1513–1523 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Whitaker, K. W. & Reyes, T. M. Central blockade of melanocortin receptors attenuates the metabolic and locomotor responses to peripheral interleukin-1beta administration. Neuropharmacology 54, 509–520 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ericsson, A., Kovács, K. J. & Sawchenko, P. E. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J. Neurosci. 14, 897–913 (1994).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun, T. P. et al. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic‒pituitary‒adrenal axis. J. Exp. Med. 208, 2449–2463 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krelin, Y. et al. Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res. 67, 1062–1071 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Grossberg, A. J. et al. Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130. Endocrinology 151, 606–616 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Hirano, T. et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324, 73–76 (1986).

    Article 
    PubMed 

    Google Scholar
     

  • Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Soler, M. F. et al. New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J. Immunother. Cancer 11, e007530 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wolf, J., Rose-John, S. & Garbers, C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 70, 11–20 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Bonetto, A. et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am. J. Physiol. Endocrinol. Metab. 303, E410–E421 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmers, T. A., Fishel, M. L. & Bonetto, A. STAT3 in the systemic inflammation of cancer cachexia. Semin. Cell Dev. Biol. 54, 28–41 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsujinaka, T. et al. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J. Clin. Investig. 97, 244–249 (1996).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, J. P. et al. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. Am. J. Physiol. Endocrinol. Metab. 304, E1042–E1052 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnuson, B., Ekim, B. & Fingar, D. C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signaling networks. Biochem. J. 441, 1–21 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Mishra, D. et al. Parabrachial interleukin-6 reduces body weight and food intake and increases thermogenesis to regulate energy metabolism. Cell Rep. 26, 3011–3026.e3015 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. Area postrema neurons mediate interleukin-6 function in cancer cachexia. Nat. Commun. 15, 4682 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, J. et al. Accelerated regeneration of the skeletal muscle in RNF13-knockout mice is mediated by macrophage-secreted IL-4/IL-6. Protein Cell 5, 235–247 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, S. W. et al. IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat. Commun. 11, 4611 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beutler, B. et al. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J. Exp. Med. 161, 984–995 (1985).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Relative contribution of adipose triglyceride lipase and hormone-sensitive lipase to tumor necrosis factor-α (TNF-α)-induced lipolysis in adipocytes. J. Biol. Chem. 286, 40477–40485 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. P. & Reid, M. B. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1165–R1170 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Yoshida, T. et al. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int. J. Biochem. Cell Biol. 45, 2322–2332 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. T. et al. Resveratrol prevents TNF-α-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes. Int. Immunopharmacol. 19, 206–213 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, H. J. & Patel, B. M. TNF-α and cancer cachexia: molecular insights and clinical implications. Life Sci. 170, 56–63 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. L. et al. Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. Proc. Natl. Acad. Sci. USA 114, E5266–e5275 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walton, K. L., Johnson, K. E. & Harrison, C. A. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front. Pharmacol. 8, 461 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Massagué, J. TGFβ signaling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. J. et al. Functional redundancy of type I and type II receptors in the regulation of skeletal muscle growth by myostatin and activin A. Proc. Natl. Acad. Sci. USA 117, 30907–30917 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sartori, R., Romanello, V. & Sandri, M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat. Commun. 12, 330 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domaniku, A., Bilgic, S. N. & Kir, S. Muscle wasting: emerging pathways and potential drug targets. Trends Pharmacol. Sci. 44, 705–718 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Domaniku-Waraich, A. et al. Oncostatin M signaling drives cancer-associated skeletal muscle wasting. Cell Rep. Med. 5, 101498 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilgic, S. N. et al. EDA2R-NIK signaling promotes muscle atrophy linked to cancer cachexia. Nature 617, 827–834 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Miki, Y. et al. Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation. Biochem. Biophys. Res. Commun. 516, 951–956 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Viswanadhapalli, S. et al. Targeting LIF/LIFR signaling in cancer. Genes Dis. 9, 973–980 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X. & Sun, K. Regulation of lipolysis in adipose tissue and clinical significance. Adv. Exp. Med. Biol. 1090, 199–210 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Basu, D. & Goldberg, I. J. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides. Curr. Opin. Lipidol. 31, 154–160 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arora, G. K. et al. Cachexia-associated adipose loss induced by tumor-secreted leukemia inhibitory factor is counterbalanced by decreased leptin. JCI Insight 3, e121221 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terawaki, K. et al. New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line. Am. J. Physiol. Endocrinol. Metab. 306, E373–E387 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sarraf, P. et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J. Exp. Med. 185, 171–175 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seto, D. N., Kandarian, S. C. & Jackman, R. W. A key role for leukemia inhibitory factor in C26 cancer cachexia. J. Biol. Chem. 290, 19976–19986 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wischhusen, J., Melero, I. & Fridman, W. H. Growth/Differentiation Factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front. Immunol. 11, 951 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rochette, L. et al. GDF15 and cardiac cells: current concepts and new insights. Int. J. Mol. Sci. 22, 8889 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnen, H. et al. Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nat. Med. 13, 1333–1340 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Cimino, I. et al. Activation of the hypothalamic‒pituitary‒adrenal axis by exogenous and endogenous GDF15. Proc. Natl. Acad. Sci. USA 118, e2106868118 (2021).

  • Garfield, B. E. et al. Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax 74, 164–176 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lerner, L. et al. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J. Cachexia Sarcopenia Muscle 7, 467–482 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Elattar, S., Dimri, M. & Satyanarayana, A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J. 32, 4727–4743 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westhrin, M. et al. Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease. Hematologica 100, e511–e514 (2015).

    Article 

    Google Scholar
     

  • Hao, J. et al. IFN-γ induces lipogenesis in mouse mesangial cells via the JAK2/STAT1 pathway. Am. J. Physiol. Cell Physiol. 304, C760–C767 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, W. Y. et al. Lipocalin-2 derived from adipose tissue mediates aldosterone-induced renal injury. JCI Insight. 3, e120196 (2018).

  • Glaviano, A. et al. PI3K/AKT/mTOR signal transduction pathway and targeted therapies in cancer. Mol. Cancer 22, 138 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsigos, C. & Chrousos, G. P. Hypothalamic‒pituitary‒adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Gioldasi, S. et al. Metabolic Association between Leptin and the Corticotropin Releasing Hormone. Endocr. Metab. Immune Disord. Drug Targets 19, 458–466 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menconi, M. et al. Role of glucocorticoids in the molecular regulation of muscle wasting. Crit. Care Med. 35, S602–S608 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Chrousos, G. P. The hypothalamic‒pituitary‒adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 332, 1351–1362 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Tsigos, C. et al. Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology 66, 54–62 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Gupta, R. et al. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. Environ. Res. 228, 115767 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Shi, P., Xu, J. & Cui, H. The recent research progress of NF-κB signaling on the proliferation, migration, invasion, immune escape and drug resistance of glioblastoma. Int. J. Mol. Sci. 24, (2023).

  • Miao, C. et al. Pyrrolidine Dithiocarbamate (PDTC) attenuates cancer cachexia by affecting muscle atrophy and fat lipolysis. Front. Pharmacol. 8, 915 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, P. K. et al. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell Biol. 191, 1395–1411 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langen, R. C. et al. NF-κB activation is required for the transition of pulmonary inflammation to muscle atrophy. Am. J. Respir. Cell Mol. Biol. 47, 288–297 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guttridge, D. C. et al. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289, 2363–2366 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Interleukin-1 stimulates catabolism in C2C12 myotubes. Am. J. Physiol. Cell Physiol. 297, C706–C714 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanna, R. A. et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094–19104 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philips, R. L. et al. The JAK-STAT pathway at 30: Much learned, much more to do. Cell 185, 3857–3876 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Shea, J. J., Holland, S. M. & Staudt, L. M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 368, 161–170 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samra, S., Bergerson, J. R. E., Freeman, A. F. & Turvey, S. E. JAK-STAT signaling pathway, immunodeficiency, inflammation, immune dysregulation, and inborn errors of immunity. J. Allergy Clin. Immunol. 155, 357–367 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 18, 368–379 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, K. A. et al. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin‒proteasome system, leading to preservation of muscle mass in cancer cachexia. J. Biol. Chem. 290, 11177–11187 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujita, J. et al. Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int. J. Cancer 68, 637–643 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Hashimoto, S. et al. Exercise-induced vitamin D receptor and androgen receptor mediate inhibition of IL-6 and STAT3 in muscle. Biochem. Biophys. Rep. 37, 101621 (2024).

    PubMed 

    Google Scholar
     

  • Testa, M. T. J. et al. Resistance training attenuates activation of STAT3 and muscle atrophy in tumor-bearing mice. Front. Oncol. 12, 880787 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, H. M. et al. STAT3 protein interacts with Class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4(+) T cells. J. Biol. Chem. 287, 30436–30443 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, S. et al. NF-κB and STAT3 cooperatively induce IL6 in starved cancer cells. Oncogene 31, 3467–3481 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Gandhi, A. Y. et al. Cytokine-mediated STAT3 transcription supports ATGL/CGI-58-dependent adipocyte lipolysis in cancer cachexia. Front. Oncol. 12, 841758 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdullahi, A. et al. Browning of white adipose tissue after a burn injury promotes hepatic steatosis and dysfunction. Cell Death Dis. 10, 870 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, L. J. et al. Whole-body and adipose tissue metabolic phenotype in cancer patients. J. Cachexia Sarcopenia Muscle 13, 1124–1133 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. & Jun, H. S. Role of myokines in regulating skeletal muscle mass and function. Front. Physiol. 10, 42 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burks, T. N. & Cohn, R. D. Role of TGF-β signaling in inherited and acquired myopathies. Skelet. Muscle 1, 19 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amthor, H. & Hoogaars, W. M. Interference with myostatin/ActRIIB signaling as a therapeutic strategy for Duchenne muscular dystrophy. Curr. Gene Ther. 12, 245–259 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • El Shafey, N. et al. Inhibition of the myostatin/Smad signaling pathway by short decorin-derived peptides. Exp. Cell Res. 341, 187–195 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schiaffino, S. et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280, 4294–4314 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Costelli, P. et al. Muscle myostatin signaling is enhanced in experimental cancer cachexia. Eur. J. Clin. Investig. 38, 531–538 (2008).

    Article 

    Google Scholar
     

  • Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kramer, H. F. & Goodyear, L. J. Exercise, MAPK, and NF-κB signaling in skeletal muscle. J. Appl. Physiol. 103, 388–395 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. ZIP4 promotes muscle wasting and cachexia in mice with orthotopic pancreatic tumors by stimulating RAB27B-Regulated release of extracellular vesicles from cancer cells. Gastroenterology 156, 722–734.e726 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chiappalupi, S. et al. Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. J. Cachexia Sarcopenia Muscle 11, 929–946 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perdiguero, E. et al. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J. 26, 1245–1256 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, S. L. & Grundmann, O. Relevance of dietary supplement use in gastrointestinal-cancer-associated cachexia. Nutrients. 15, 3391 (2023).

  • Coniglio, S., Shumskaya, M. & Vassiliou, E. Unsaturated fatty acids and their immunomodulatory properties. Biology. 12, 279 (2023).

  • Loyala, J. V., Down, B., Wong, E. & Tan, B. Treatment of cachexia in gastric cancer: exploring the use of anti-inflammatory natural products and their derivatives. Nutrients. 16, 1246 (2024).

  • Mocellin, M. C., Camargo, C. D. Q., Fabre, M. E. D. S. & Trindade, E. B. S. D. M. Fish oil effects on quality of life, body weight and free fat mass change in gastrointestinal cancer patients undergoing chemotherapy: a triple blind, randomized clinical trial. J. Funct. Foods 31, 113–122 (2017).

    Article 

    Google Scholar
     

  • Jatoi, A. et al. A double-blind, placebo-controlled randomized trial of creatine for the cancer anorexia/weight loss syndrome (N02C4): an Alliance trial. Ann. Oncol. 28, 1957–1963 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inui, A. Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J. Clin. 52, 72–91 (2002).

    PubMed 

    Google Scholar
     

  • Tchekmedyian, N. S., Tait, N., Moody, M. & Aisner, J. High-dose megestrol acetate. A possible treatment for cachexia. JAMA 257, 1195–1198 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Kouchaki, B. et al. Randomized double-blind clinical trial of combined treatment with megestrol acetate plus celecoxib versus megestrol acetate alone in cachexia-anorexia syndrome induced by GI cancers. Support. Care Cancer 26, 2479–2489 (2018).

    PubMed 

    Google Scholar
     

  • Kerem, M. et al. Adipokines and ghrelin in gastric cancer cachexia. World J. Gastroenterol. 14, 3633–3641 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strasser, F. et al. Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: a randomized, placebo-controlled, double-blind, double-crossover study. Br. J. Cancer 98, 300–308 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dev, R., Amano, K., Naito, T. & Del Fabbro, E. Anamorelin for the treatment of cancer anorexia-cachexia syndrome. Curr. Oncol. Rep. 26, 762–772 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Herodes, M. et al. Pilot clinical trial of macimorelin to assess safety and efficacy in patients with cancer cachexia. J. Cachexia Sarcopenia Muscle 14, 835–846 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamauchi, S. et al. A multicenter, open-label, single-arm study of anamorelin (ONO-7643) in advanced gastrointestinal cancer patients with cancer cachexia. Cancer 125, 4294–4302 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Iwai, N. et al. Predictors of response to anamorelin in gastrointestinal cancer patients with cachexia: a retrospective study. Support. Care Cancer 31, 115 (2023).

    PubMed 

    Google Scholar
     

  • Bar-Sela, G., Zalman, D., Semenysty, V. & Ballan, E. The effects of dosage-controlled cannabis capsules on cancer-related cachexia and anorexia syndrome in advanced cancer patients: pilot study. Integr. Cancer Ther. 18, 1534735419881498 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandhya, L. et al. Randomized double-blind placebo-controlled study of olanzapine for chemotherapy-related anorexia in patients with locally advanced or metastatic gastric, hepatopancreaticobiliary, and lung cancer. J. Clin. Oncol. 41, 2617–2627 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Riechelmann, R. P. et al. Phase II trial of mirtazapine for cancer-related cachexia and anorexia. Am. J. Hosp. Palliat. Care. 27, 106–110 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Almeida, O. L. S. et al. Mirtazapine versus megestrol in the treatment of anorexia-cachexia syndrome in patients with advanced cancer: a randomized, double-blind, controlled phase II clinical trial. Cancers. 15, 3588 (2023).

  • Hickish, T. et al. MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomized, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 18, 192–201 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, R. et al. Curcumin treatment suppresses cachexia-associated adipose wasting in mice by blocking the cAMP/PKA/CREB signaling pathway. Phytomedicine 109, 154563 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chaiworramukkul, A., Seetalarom, K., Saichamchan, S. & Prasongsook, N. A double-blind, placebo-controlled randomized phase IIa study: evaluating the effect of curcumin for treatment of cancer anorexia-cachexia syndrome in solid cancer patients. Asian Pac. J. Cancer Prev. 23, 2333–2340 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, V. et al. Results of a pilot study of the effects of celecoxib on cancer cachexia in patients with cancer of the head, neck, and gastrointestinal tract. Head. Neck 30, 67–74 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Mantovani, G. et al. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J. Mol. Med. 88, 85–92 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jatoi, A. et al. A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight loss syndrome: results from N00C1 from the North Central Cancer Treatment Group. Cancer 110, 1396–1403 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, M. et al. A Phase II dose titration study of thalidomide for cancer-associated anorexia. J. Pain. Symptom Manag. 43, 78–86 (2012).

    Article 

    Google Scholar
     

  • Yennurajalingam, S. et al. The role of thalidomide and placebo for the treatment of cancer-related anorexia-cachexia symptoms: results of a double-blind placebo-controlled randomized study. J. Palliat. Med. 15, 1059–1064 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, H. S. et al. Clinical studies on the treatment of cancer cachexia with megestrol acetate plus thalidomide. Chemotherapy 58, 461–467 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chasen, M., Hirschman, S. Z. & Bhargava, R. Phase II study of the novel peptide-nucleic acid OHR118 in the management of cancer-related anorexia/cachexia. J. Am. Med. Dir. Assoc. 12, 62–67 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Hauer, K. et al. Improvement in muscular performance and decrease in tumor necrosis factor level in old age after antioxidant treatment. J. Mol. Med. 81, 118–125 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Lundholm, K. et al. Insulin treatment in cancer cachexia: effects on survival, metabolism, and physical functioning. Clin. Cancer Res. 13, 2699–2706 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Hsu, J. Y. et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255–259 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Breen, D. M. et al. GDF-15 neutralization alleviates platinum-based chemotherapy-induced emesis, anorexia, and weight loss in mice and nonhuman primates. Cell Metab. 32, 938–950.e936 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lerner, L. et al. Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J. Cachexia Sarcopenia Muscle 6, 317–324 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crawford, J. et al. A Phase Ib first-in-patient study assessing the safety, tolerability, pharmacokinetics, and pharmacodynamics of ponsegromab in participants with cancer and cachexia. Clin. Cancer Res. 30, 489–497 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Groarke, J. D. et al. Ponsegromab for the treatment of cancer cachexia. N. Engl. J. Med. 391, 2291–2303 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. L. et al. Elevated expression of activins promotes muscle wasting and cachexia. FASEB J. 28, 1711–1723 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Christopher, C. N. et al. Exercise and nutrition interventions for prehabilitation in hepato-pancreato-biliary cancers: a narrative review. Nutrients. 15, 5044 (2023).

  • Gukovsky, I. et al. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 144, 1199–1209.e1194 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Gordon, J. N. et al. Thalidomide in the treatment of cancer cachexia: a randomized placebo controlled trial. Gut 54, 540–545 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiedenmann, B. et al. A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J. Support. Oncol. 6, 18–25 (2008).

    PubMed 

    Google Scholar
     

  • Kraft, M. et al. L-Carnitine-supplementation in advanced pancreatic cancer (CARPAN)–a randomized multicenter trial. Nutr. J. 11, 52 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, S. A., Thomas, H. C., Davidson, B. R. & Taylor-Robinson, S. D. Cholangiocarcinoma. Lancet 366, 1303–1314 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bekaii-Saab, T. et al. Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. J. Clin. Oncol. 29, 2357–2363 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prado, C. M. et al. Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Br. J. Cancer 106, 1583–1586 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finn, R. S. et al. Phase 1b investigation of the MEK inhibitor binimetinib in patients with advanced or metastatic biliary tract cancer. Investig. N. Drugs 36, 1037–1043 (2018).

    Article 

    Google Scholar
     

  • Yuan, L. et al. The atypical β-blocker S-oxprenolol reduces cachexia and improves survival in a rat cancer cachexia model. J. Cachexia Sarcopenia Muscle 14, 653–660 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Stewart et al. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double-blind, placebo-controlled, international multicenter phase II study (the ACT-ONE trial). J. Cachexia Sarcopenia Muscle 7, 355–365 (2016).

    Article 

    Google Scholar
     

  • Pötsch, M. S. et al. MT-102 prevents tissue wasting and improves survival in a rat model of severe cancer cachexia. J. Cachexia Sarcopenia Muscle 11, 594–605 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed 

    Google Scholar
     

  • Op den Kamp, C. M. et al. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system. Lung Cancer 76, 112–117 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Cortiula, F. et al. Physical exercise at the crossroad between muscle wasting and the immune system: implications for lung cancer cachexia. J. Cachexia Sarcopenia Muscle 13, 55–67 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arrieta, O. et al. Mirtazapine as appetite stimulant in patients with non-small cell lung cancer and anorexia: a randomized clinical trial. JAMA Oncol. 10, 305–314 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turcott, J. G. et al. The effect of nabilone on appetite, nutritional status, and quality of life in lung cancer patients: a randomized, double-blind clinical trial. Support. Care Cancer 26, 3029–3038 (2018).

    PubMed 

    Google Scholar
     

  • Crawford, J. et al. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER Trials). Curr. Oncol. Rep. 18, 37 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohl, C. E. et al. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J. Biol. Chem. 280, 37747–37754 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Dobs, A. S. et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomized controlled phase 2 trial. Lancet Oncol. 14, 335–345 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Setiawan, T. et al. Cancer cachexia: molecular mechanisms and treatment strategies. J. Hematol. Oncol. 16, 54 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart et al. The ACT-ONE trial, a multicenter, randomized, double-blind, placebo-controlled, dose-finding study of the anabolic/catabolic transforming agent, MT-102 in subjects with cachexia related to stage III and IV non-small cell lung cancer and colorectal cancer: study design. J. Cachexia Sarcopenia Muscle 2, 201–207 (2011).

    Article 

    Google Scholar
     

  • Zhang, H. & Garcia, J. M. Anamorelin hydrochloride for the treatment of cancer-anorexia-cachexia in NSCLC. Expert Opin. Pharmacother. 16, 1245–1253 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Northrup, R. et al. Effect of ghrelin and anamorelin (ONO-7643), a selective ghrelin receptor agonist, on tumor growth in a lung cancer mouse xenograft model. Support. Care Cancer 21, 2409–2415 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Temel, J. S. et al. Anamorelin in patients with non-small cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomized, double-blind, phase 3 trials. Lancet Oncol. 17, 519–531 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Currow, D. et al. ROMANA 3: a phase 3 safety extension study of anamorelin in advanced non-small cell lung cancer (NSCLC) patients with cachexia. Ann. Oncol. 28, 1949–1956 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takayama, K. et al. Anamorelin (ONO-7643) in Japanese patients with non-small cell lung cancer and cachexia: results of a randomized phase 2 trial. Support. Care Cancer 24, 3495–3505 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katakami, N. et al. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer 124, 606–616 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Nakanishi, Y., Higuchi, J., Honda, N. & Komura, N. Pharmacological profile and clinical efficacy of anamorelin HCl (ADLUMIZ(®)Tablets), the first orally available drug for cancer cachexia with ghrelin-like action in Japan]. Nihon Yakurigaku Zasshi 156, 370–381 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kwon, M. et al. Prevalence and clinical significance of cancer cachexia based on time from treatment in advanced-stage head and neck squamous cell carcinoma. Head. Neck 39, 716–723 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Muthanandam, S. & Muthu, J. Understanding cachexia in head and neck cancer. Asia Pac. J. Oncol. Nurs. 8, 527–538 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McQuellon, R. P. et al. Supportive use of megestrol acetate (Megace) with head/neck and lung cancer patients receiving radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 52, 1180–1185 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Yeh, K. Y. et al. Omega-3 fatty acid-, micronutrient-, and probiotic-enriched nutrition helps body weight stabilization in head and neck cancer cachexia. Oral. Surg. Oral. Med Oral. Pathol. Oral. Radio. 116, 41–48 (2013).

    Article 

    Google Scholar
     

  • Pottel, L. et al. Echium oil is not protective against weight loss in head and neck cancer patients undergoing curative radio(chemo)therapy: a randomized-controlled trial. BMC Complement. Altern. Med. 14, 382 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thambamroong, T. et al. Efficacy of curcumin on treating cancer anorexia-cachexia syndrome in locally or advanced head and neck cancer: a double-blind, placebo-controlled randomized phase IIa Trial (CurChexia). J. Nutr. Metab. 2022, 5425619 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossetti, M. L., Steiner, J. L. & Gordon, B. S. Androgen-mediated regulation of skeletal muscle protein balance. Mol. Cell Endocrinol. 447, 35–44 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, T. J. et al. A randomized trial of adjunct testosterone for cancer-related muscle loss in men and women. J. Cachexia Sarcopenia Muscle 9, 482–496 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldberg, J. E. & Schwertfeger, K. L. Proinflammatory cytokines in breast cancer: mechanisms of action and potential targets for therapeutics. Curr. Drug Targets 11, 1133–1146 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Paixão, E. et al. The effects of EPA and DHA enriched fish oil on nutritional and immunological markers of treatment naïve breast cancer patients: a randomized double-blind controlled trial. Nutr. J. 16, 71 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatri, U. et al. Selpercatinib mitigates cancer cachexia independent of anti-tumor activity in the HT1080 tumor model. Cancer Lett. 611, 217444 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, J. Y. et al. Erratum: non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 551, 398 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullican, S. E. et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 23, 1150–1157 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, M., Li, L., Jin, D. & Liu, Y. Nanobody-A versatile tool for cancer diagnosis and therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 13, e1697 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. GB18-06, a nanobody targeting GDF15, effectively alleviates weight loss and restores physical function in cachexia models. MAbs 16, 2416453 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konrad, D. & Wueest, S. The gut-adipose-liver axis in the metabolic syndrome. Physiol. 29, 304–313 (2014).

    Article 

    Google Scholar
     

  • Matsubara, Y. et al. Organ and brain crosstalk: the liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 205, 108915 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zaiss, M. M., Jones, R. M., Schett, G. & Pacifici, R. The gut-bone axis: how bacterial metabolites bridge the distance. J. Clin. Investig. 129, 3018–3028 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez-Ambrosi, J., Rodríguez, A., Catalán, V. & Frühbeck, G. The bone-adipose axis in obesity and weight loss. Obes. Surg. 18, 1134–1143 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Gray, J. S., Wani, S. A. & Campbell, M. J. Epigenomic alterations in cancer: mechanisms and therapeutic potential. Clin. Sci. 136, 473–492 (2022).

    Article 

    Google Scholar
     

  • Tseng, Y. C. et al. Preclinical investigation of the novel histone deacetylase inhibitor AR-42 in the treatment of cancer-induced cachexia. J. Natl Cancer Inst. 107, djv274 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kottorou, A., Dimitrakopoulos, F. I. & Tsezou, A. Non-coding RNAs in cancer-associated cachexia: clinical implications and future perspectives. Transl. Oncol. 14, 101101 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X. et al. Circular RNA ANAPC7 inhibits tumor growth and muscle wasting via PHLPP2-AKT-TGF-β signaling axis in pancreatic cancer. Gastroenterology 162, 2004–2017.e2002 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Han, J., Meng, Q., Shen, L. & Wu, G. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. 17, 14 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Aiello, D., Patel, K. & Lasagna, E. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim. Genet. 49, 505–519 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Shintaku, J. et al. MyoD regulates skeletal muscle oxidative metabolism cooperatively with alternative NF-κB. Cell Rep. 17, 514–526 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey, J. L., Hang, H., Boudreau, A. & Elks, C. M. Oncostatin M Induces lipolysis and suppresses insulin response in 3T3-L1 Adipocytes. Int. J. Mol. Sci. 23, 4689 (2022).

  • Johnen, H. et al. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat. Med. 13, 1333–1340 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Fouladiun, M. et al. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care–correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 103, 2189–2198 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Iguchi, H. et al. Involvement of parathyroid hormone-related protein in experimental cachexia induced by a human lung cancer-derived cell line established from a bone metastasis specimen. Int. J. Cancer 94, 24–27 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Cabedo Martinez, A. I. et al. Biochemical and structural characterization of the interaction between the siderocalin NGAL/LCN2 (Neutrophil Gelatinase-associated Lipocalin/Lipocalin 2) and the N-terminal domain of its endocytic receptor SLC22A17. J. Biol. Chem. 291, 2917–2930 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia, J. M. et al. Anamorelin for patients with cancer cachexia: an integrated analysis of two phase 2, randomized, placebo-controlled, double-blind trials. Lancet Oncol. 16, 108–116 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia, J. M., Friend, J. & Allen, S. Therapeutic potential of anamorelin, a novel, oral ghrelin mimetic, in patients with cancer-related cachexia: a multicenter, randomized, double-blind, crossover, pilot study. Support. Care Cancer 21, 129–137 (2013).

    PubMed 

    Google Scholar
     

  • Golan, T. et al. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. J. Cachexia Sarcopenia Muscle 9, 871–879 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jatoi, A. et al. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68, 234–239 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Del Fabbro, E. et al. Effects of melatonin on appetite and other symptoms in patients with advanced cancer and cachexia: a double-blind placebo-controlled trial. J. Clin. Oncol. 31, 1271–1276 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beijer, S. et al. Effect of adenosine 5’-triphosphate infusions on the nutritional status and survival of preterminal cancer patients. Anticancer Drugs 20, 625–633 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Cuvelier, G. D. et al. A randomized, double-blind, placebo-controlled clinical trial of megestrol acetate as an appetite stimulant in children with weight loss due to cancer and/or cancer therapy. Pediatr. Blood Cancer 61, 672–679 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Couluris, M. et al. The effect of cyproheptadine hydrochloride (periactin) and megestrol acetate (megace) on weight in children with cancer/treatment-related cachexia. J. Pediatr. Hematol. Oncol. 30, 791–797 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laviano, A., Muscaritoli, M. & Rossi-Fanelli, F. Phase II study of high-dose fish oil capsules for patients with cancer-related cachexia: a Cancer and Leukemia Group B study. Cancer 103, 651–652 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Abe, K. et al. Effects of ω-3 fatty acid supplementation in patients with bile duct or pancreatic cancer undergoing chemotherapy. Anticancer Res. 38, 2369–2375 (2018).

    PubMed 

    Google Scholar
     

  • Cheon, C. et al. Efficacy and safety of Sipjeondaebo-Tang for Anorexia in Patients with cancer: a pilot, randomized, double-blind, placebo-controlled trial. Evid. Based Complement. Altern. Med. 2017, 8780325 (2017).

    Article 

    Google Scholar
     

  • de Clercq, N. C. et al. Fecal microbiota transplantation from overweight or obese donors in cachectic patients with advanced gastroesophageal cancer: a randomized, double-blind, placebo-controlled, phase II study. Clin. Cancer Res. 27, 3784–3792 (2021).

    Article 
    PubMed 

    Google Scholar