Fluid shifts are main drivers for microgravity simulation-induced immune-physiological changes: findings from the VIVALDI studies

Fluid shifts are main drivers for microgravity simulation-induced immune-physiological changes: findings from the VIVALDI studies

  • Monici, M., van Loon, J., Choukér, A. & Iorio, C. S. Editorial: Wound management and healing in space. Front. Bioeng. Biotechnol. 10, 1078986. https://doi.org/10.3389/fbioe.2022.1078986 (2022).


    Google Scholar
     

  • Capri, M. et al. Long-term human spaceflight and inflammaging: does it promote aging? Ageing Res. Rev. 87, 101909. https://doi.org/10.1016/j.arr.2023.101909 (2023).


    Google Scholar
     

  • Kennedy, A. R. et al. Effects of sex and gender on adaptation to space: immune system. J. Womens. Health 23, 956–958, https://doi.org/10.1089/jwh.2014.4913 (2014).


    Google Scholar
     

  • Buchheim, J. I. et al. Stress related shift toward inflammaging in cosmonauts after long-duration space flight. Front. Physiol. 10, 85, https://doi.org/10.3389/fphys.2019.00085 (2019).


    Google Scholar
     

  • Moser, D. et al. Differential effects of hypergravity on immune dysfunctions induced by simulated microgravity. FASEB J. 37, e22910. https://doi.org/10.1096/fj.202201781R (2023).


    Google Scholar
     

  • Crucian, B. et al. Incidence of clinical symptoms during long-duration orbital spaceflight. Int. J. Gen. Med. 9, 383–391, https://doi.org/10.2147/ijgm.S114188 (2016).


    Google Scholar
     

  • Van Walleghem, M. et al. Gravity-related immunological changes in human whole blood cultured under simulated microgravity using an in vitro cytokine release assay. J. Interferon Cytokine Res. 37, 531–540, https://doi.org/10.1089/jir.2017.0065 (2017).


    Google Scholar
     

  • Akiyama, T. et al. How does spaceflight affect the acquired immune system?. NPJ Microgravity 6, 14. https://doi.org/10.1038/s41526-020-0104-1 (2020).


    Google Scholar
     

  • Mehta, S. K. et al. Latent virus reactivation in astronauts on the international space station. NPJ Microgravity 3, 11. https://doi.org/10.1038/s41526-017-0015-y (2017).


    Google Scholar
     

  • Mann, V. et al. Effects of microgravity and other space stressors in immunosuppression and viral reactivation with potential nervous system involvement. Neurol. India 67, S198–s203, https://doi.org/10.4103/0028-3886.259125 (2019).


    Google Scholar
     

  • Makedonas, G. et al. Specific immunologic countermeasure protocol for deep-space exploration missions. Front. Immunol. 10, 2407, https://doi.org/10.3389/fimmu.2019.02407 (2019).


    Google Scholar
     

  • Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638, https://doi.org/10.1038/nri.2016.90 (2016).


    Google Scholar
     

  • Mark, S. et al. The impact of sex and gender on adaptation to space: executive summary. J. Womens. Health 23, 941–947, https://doi.org/10.1089/jwh.2014.4914 (2014).


    Google Scholar
     

  • Strewe, C. et al. Sex differences in stress and immune responses during confinement in Antarctica. Biol. Sex. Differ. 10, 20, https://doi.org/10.1186/s13293-019-0231-0 (2019).


    Google Scholar
     

  • Robin, A. et al. Comprehensive assessment of physiological responses in women during the ESA dry immersion VIVALDI microgravity simulation. Nat. Commun. 14, 6311. https://doi.org/10.1038/s41467-023-41990-4 (2023).


    Google Scholar
     

  • Amirova, L. et al. Cardiovascular system under simulated weightlessness: head-down bed rest vs. dry immersion. Front. Physiol. 11, 395, https://doi.org/10.3389/fphys.2020.00395 (2020).


    Google Scholar
     

  • Gallardo-Dodd, C. J. et al. Exposure of volunteers to microgravity by dry immersion bed over 21 days results in gene expression changes and adaptation of T cells. Sci. Adv. 9, eadg1610. https://doi.org/10.1126/sciadv.adg1610 (2023).


    Google Scholar
     

  • Pandiarajan, M. & Hargens, A. R. Ground-based analogs for human spaceflight. Front. Physiol. 11, 716, https://doi.org/10.3389/fphys.2020.00716 (2020).


    Google Scholar
     

  • Jirak, P. et al. How spaceflight challenges human cardiovascular health. Eur. J. Prev. Cardiol. 29, 1399–1411, https://doi.org/10.1093/eurjpc/zwac029 (2022).


    Google Scholar
     

  • Feuerecker, M. et al. Five days of head-down-tilt bed rest induces noninflammatory shedding of L-selectin. J. Appl. Physiol. 115, 235–242, https://doi.org/10.1152/japplphysiol.00381.2013 (2013).


    Google Scholar
     

  • Feuerecker, M. et al. Headache under simulated microgravity is related to endocrine, fluid distribution, and tight junction changes. Pain 157, 1072–1078, https://doi.org/10.1097/j.pain.0000000000000481 (2016).


    Google Scholar
     

  • Dill, D. B. & Costill, D. L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 37, 247–248, https://doi.org/10.1152/jappl.1974.37.2.247 (1974).


    Google Scholar
     

  • Berendeeva, T. A., Rykova, M. P., Antropova, E. N., Larina, I. M. & Morukov, B. V. State of the immune system after seven-day “dry” immersion in human. Hum. Physiol. 37, 840–845, https://doi.org/10.1134/S0362119711070073 (2011).


    Google Scholar
     

  • Ponomarev, S. A., Rykova, M. P., Antropova, E. N., Berendeeva, T. A. & Morukov, B. V. Human innate immunity under the conditions of five-day dry immersion. Hum. Physiol. 39, 780–786, https://doi.org/10.1134/S0362119713070141 (2013).


    Google Scholar
     

  • Chen, Y. et al. Difference in leukocyte composition between women before and after menopausal age, and distinct sexual dimorphism. PLoS One 11, e0162953, https://doi.org/10.1371/journal.pone.0162953 (2016).


    Google Scholar
     

  • Rooney, B. V., Crucian, B. E., Pierson, D. L., Laudenslager, M. L. & Mehta, S. K. Herpes virus reactivation in astronauts during spaceflight and its application on Earth. Front. Microbiol 10, 16, https://doi.org/10.3389/fmicb.2019.00016 (2019).


    Google Scholar
     

  • Brundin, P. M. A., Landgren, B. M., Fjällström, P., Johansson, A. F. & Nalvarte, I. Blood hormones and torque teno virus in peripheral blood mononuclear cells. Heliyon 6, e05535. https://doi.org/10.1016/j.heliyon.2020.e05535 (2020).


    Google Scholar
     

  • Nordén, R. et al. Quantification of Torque Teno Virus and Epstein-Barr Virus is of limited value for predicting the net state of immunosuppression after lung transplantation. Open Forum Infect. Dis. 5, ofy050. https://doi.org/10.1093/ofid/ofy050 (2018).


    Google Scholar
     

  • Spezia, P. G. et al. TTV and other anelloviruses: the astonishingly wide spread of a viral infection. Asp. Mol. Med. 1, None, https://doi.org/10.1016/j.amolm.2023.100006 (2023).


    Google Scholar
     

  • Peaston, R. T. & Weinkove, C. Measurement of catecholamines and their metabolites. Ann. Clin. Biochem. 41, 17–38, https://doi.org/10.1258/000456304322664663 (2004).


    Google Scholar
     

  • Zouhal, H., Jacob, C., Delamarche, P. & Gratas-Delamarche, A. Catecholamines and the effects of exercise, training and gender. Sports Med. 38, 401–423, https://doi.org/10.2165/00007256-200838050-00004 (2008).


    Google Scholar
     

  • Buchheim, J. I. et al. Oxidative burst and Dectin-1-triggered phagocytosis affected by norepinephrine and endocannabinoids: implications for fungal clearance under stress. Int. Immunol. 30, 79–89, https://doi.org/10.1093/intimm/dxy001 (2018).


    Google Scholar
     

  • Oya, H. et al. The differential effect of stress on natural killer T (NKT) and NK cell function. Clin. Exp. Immunol. 121, 384–390, https://doi.org/10.1046/j.1365-2249.2000.01310.x (2000).


    Google Scholar
     

  • van de Wouw, M. et al. Acute stress increases monocyte levels and modulates receptor expression in healthy females. Brain Behav. Immun. 94, 463–468, https://doi.org/10.1016/j.bbi.2021.03.005 (2021).


    Google Scholar
     

  • Clément, G. et al. Centrifugation as a countermeasure during bed rest and dry immersion: what has been learned? J. Musculoskelet. Neuronal Interact. 16, 84–91 (2016).


    Google Scholar
     

  • Jordan, J., Limper, U. & Tank, J. Cardiovascular autonomic nervous system responses and orthostatic intolerance in astronauts and their relevance in daily medicine. Neurol. Sci. 43, 3039–3051, https://doi.org/10.1007/s10072-022-05963-7 (2022).


    Google Scholar
     

  • van Loon, L. M., Steins, A., Schulte, K. M., Gruen, R. & Tucker, E. M. Computational modeling of orthostatic intolerance for travel to Mars. NPJ Microgravity 8, 34. https://doi.org/10.1038/s41526-022-00219-2 (2022).


    Google Scholar
     

  • Drudi, L. & Grenon, S. M. Women’s health in spaceflight. Aviat. Space Environ. Med. 85, 645–652, https://doi.org/10.3357/asem.3889.2014 (2014).


    Google Scholar
     

  • Evans, J. M. et al. Hypovolemic men and women regulate blood pressure differently following exposure to artificial gravity. Eur. J. Appl. Physiol. 115, 2631–2640, https://doi.org/10.1007/s00421-015-3261-2 (2015).


    Google Scholar
     

  • van Helmond, N. et al. White blood cell concentrations during lower body negative pressure and blood loss in humans. Exp. Physiol. 101, 1265–1275, https://doi.org/10.1113/ep085952 (2016).


    Google Scholar
     

  • Klokker, M., Secher, N. H., Matzen, S. & Pedersen, B. K. Natural killer cell activity during head-up tilt-induced central hypovolemia in humans. Aviat. Space Environ. Med. 64, 1128–1132 (1993).


    Google Scholar
     

  • Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188, https://doi.org/10.1038/s41577-022-00761-w (2023).


    Google Scholar
     

  • Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74, https://doi.org/10.1038/s41586-019-1485-8 (2019).


    Google Scholar
     

  • Saitakis, M. et al. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. Elife 6, https://doi.org/10.7554/eLife.23190 (2017)

  • Varghese, M. et al. Monocyte trafficking and polarization contribute to sex differences in meta-inflammation. Front. Endocrinol. 13, 826320. https://doi.org/10.3389/fendo.2022.826320 (2022).


    Google Scholar
     

  • Prossin, A. R. et al. Dynamic interactions between plasma IL-1 family cytokines and central endogenous opioid neurotransmitter function in humans. Neuropsychopharmacology 40, 554–565, https://doi.org/10.1038/npp.2014.202 (2015).


    Google Scholar
     

  • Lynch, E. A., Dinarello, C. A. & Cannon, J. G. Gender differences in IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist secretion from mononuclear cells and urinary excretion. J. Immunol. 153, 300–306 (1994).


    Google Scholar
     

  • Subramanian, N. et al. Sex-specific regulation of IL-10 production in human adipose tissue in obesity. Front. Endocrinol. 13, 996954. https://doi.org/10.3389/fendo.2022.996954 (2022).


    Google Scholar
     

  • Sim, J. et al. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. bioRxiv https://doi.org/10.1101/2023.11.03.565129 (2023).

  • Kelsen, J. et al. 21 Days head-down bed rest induces weakening of cell-mediated immunity – some spaceflight findings confirmed in a ground-based analog. Cytokine 59, 403–409, https://doi.org/10.1016/j.cyto.2012.04.032 (2012).


    Google Scholar
     

  • Bonnefoy, J. et al. B-cell homeostasis is maintained during two months of head-down tilt bed rest with or without antioxidant supplementation. Front. Immunol. 13, 830662. https://doi.org/10.3389/fimmu.2022.830662 (2022).


    Google Scholar
     

  • Shearer, W. T. et al. Immune responses in adult female volunteers during the bed-rest model of spaceflight: antibodies and cytokines. J. Allergy Clin. Immunol. 123, 900–905, https://doi.org/10.1016/j.jaci.2008.12.016 (2009).


    Google Scholar
     

  • Hafezi-Moghadam, A., Thomas, K. L., Prorock, A. J., Huo, Y. & Ley, K. L-selectin shedding regulates leukocyte recruitment. J. Exp. Med. 193, 863–872, https://doi.org/10.1084/jem.193.7.863 (2001).


    Google Scholar
     

  • Lee, D., Schultz, J. B., Knauf, P. A. & King, M. R. Mechanical shedding of L-selectin from the neutrophil surface during rolling on sialyl Lewis x under flow. J. Biol. Chem. 282, 4812–4820, https://doi.org/10.1074/jbc.M609994200 (2007).


    Google Scholar
     

  • Ball, C. J. & King, M. R. Role of c-Abl in L-selectin shedding from the neutrophil surface. Blood Cells Mol. Dis. 46, 246–251, https://doi.org/10.1016/j.bcmd.2010.12.010 (2011).


    Google Scholar
     

  • Tomilovskaya, E., Shigueva, T., Sayenko, D., Rukavishnikov, I. & Kozlovskaya, I. Dry immersion as a ground-based model of microgravity physiological effects. Front. Physiol. 10, 284, https://doi.org/10.3389/fphys.2019.00284 (2019).


    Google Scholar
     

  • Hargens, A. R. & Vico, L. Long-duration bed rest as an analog to microgravity. J. Appl Physiol. 120, 891–903, https://doi.org/10.1152/japplphysiol.00935.2015 (2016).


    Google Scholar
     

  • Shenkman, B. S., Kozlovskaya, I. B., Nemirovskaya, T. L. & Tcheglova, I. A. Human muscle atrophy in supportlessness: effects of short-term exposure to dry immersion. J. Gravit. Physiol. 4, P137–P138 (1997).


    Google Scholar