LDL-binding IL-10 reduces vascular inflammation in atherosclerotic mice

LDL-binding IL-10 reduces vascular inflammation in atherosclerotic mice

  • Valanti, E.-K. et al. Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism 116, 154461 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hetherington, I. & Totary-Jain, H. Anti-atherosclerotic therapies: milestones, challenges, and emerging innovations. Mol. Ther. 30, 3106–3117 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meza-Contreras, A. et al. Statin intolerance management: a systematic review. Endocrine 79, 430–436 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banach, M., Stulc, T., Dent, R. & Toth, P. P. Statin non-adherence and residual cardiovascular risk: there is need for substantial improvement. Int. J. Cardiol. 225, 184–196 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, F. B. & Anderson, R. N. The leading causes of death in the US for 2020. JAMA 325, 1829–1830 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaidai, O., Cao, Y. & Loginov, S. Global cardiovascular diseases death rate prediction. Curr. Probl. Cardiol. 48, 101622 (2023).

  • Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libby, P. Inflammation in atherosclerosis—no longer a theory. Clin. Chem. 67, 131–142 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Orekhov, A. N. LDL and foam cell formation as the basis of atherogenesis. Curr. Opin. Lipidol. 29, 279–284 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Y., Li, P. & Ye, J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3, 173–181 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engelen, S. E., Robinson, A. J., Zurke, Y.-X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Gonzalez, M. A., Ortega-Rivera, O. A. & Steinmetz, N. F. Two decades of vaccine development against atherosclerosis. Nano Today 50, 101822 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arter. Thromb. Vasc. Biol. 19, 2847–2853 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Namiki, M. et al. Intramuscular gene transfer of interleukin-10 cDNA reduces atherosclerosis in apolipoprotein E-knockout mice. Atherosclerosis 172, 21–29 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshioka, T. et al. Adeno-associated virus vector-mediated interleukin-10 gene transfer inhibits atherosclerosis in apolipoprotein E-deficient mice. Gene Ther. 11, 1772–1779 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. et al. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/-mice. Biomaterials 226, 119550 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silver, A. B., Leonard, E. K., Gould, J. R. & Spangler, J. B. Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol. Sci. 42, 1064–1081 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kita, T. et al. Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci. 947, 199–206 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110, 2047–2052 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiopu, A. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in Apobec-1−/−/low-density lipoprotein receptor−/− mice. J. Am. Coll. Cardiol. 50, 2313–2318 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson, J. & Carlsson, R. Oxidized LDL and Antibodies Thereto for the Treatment of Atherosclerotic Plaques. Publication No. WO 2008/104194 A1 (World Intellectual Property Organization, 2007).

  • Makabe, K., Tereshko, V., Gawlak, G., Yan, S. & Koide, S. Atomic-resolution crystal structure of Borrelia burgdorferi outer surface protein A via surface engineering. Protein Sci. 15, 1907–1914 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gautier, E. L., Jakubzick, C. & Randolph, G. J. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arter. Thromb. Vasc. Biol. 29, 1412–1418 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Georgakis, M. K., Bernhagen, J., Heitman, L. H., Weber, C. & Dichgans, M. Targeting the CCL2–CCR2 axis for atheroprotection. Eur. Heart J. 43, 1799–1808 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhury, R. P., Lee, J. M. & Greaves, D. R. Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med. 2, 309–315 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maguire, E. M., Pearce, S. W. & Xiao, Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease. Vasc. Pharmacol. 112, 54–71 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Reardon, C. A. & Getz, G. S. Mouse models of atherosclerosis. Curr. Opin. Lipidol. 12, 167–173 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuura, E., Hughes, G. R. & Khamashta, M. A. Oxidation of LDL and its clinical implication. Autoimmun. Rev. 7, 558–566 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques. Mol. Metab. 2, 256–269 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, E. B. & Kibbe, M. R. Nanomaterials to resolve atherosclerosis. ACS Biomater. Sci. Eng. 6, 3693–3712 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nong, J., Glassman, P. M. & Muzykantov, V. R. Targeting vascular inflammation through emerging methods and drug carriers. Adv. Drug Deliv. Rev. 184, 114180 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuvaev, V. V. et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25, 348 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuvaev, V. V. et al. Modulation of endothelial targeting by size of antibody–antioxidant enzyme conjugates. J. Control. Release 149, 236–241 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutmacher, C. & Neri, D. Antibody–cytokine fusion proteins: biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv. Drug Deliv. Rev. 141, 67–91 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bootz, F. & Neri, D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov. Today 21, 180–189 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galeazzi, M. et al. FRI0118 Dekavil (F8IL10)–Update on the Results of Clinical Trials Investigating the Immunocytokine in Patients with Rheumatoid Arthritis (BMJ Publishing Group, 2018).

  • Toshima, S. et al. Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease. Arter. Thromb. Vasc. Biol. 20, 2243–2247 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. N. Y. Acad. Sci. 947, 214–223 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sziksz, E. et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediators Inflamm. 2015, 764641 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Getz, G. S. & Reardon, C. A. Do the Apoe−/− and Ldlr−/− mice yield the same insight on atherogenesis? Arter. Thromb. Vasc. Biol. 36, 1734–1741 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sakkers, T. R. et al. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 384, 117279 (2023).

  • Gonçalves, I. et al. Identification of the target for therapeutic recombinant anti-apoB-100 peptide antibodies in human atherosclerotic lesions. Atherosclerosis 205, 96–100 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Watkins, E. A. et al. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci. Immunol. 6, eabe1801 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butcher, M. J., Herre, M., Ley, K. & Galkina, E. Flow cytometry analysis of immune cells within murine aortas. J. Vis. Exp. https://doi.org/10.3791/2848 (2011).