Valanti, E.-K. et al. Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism 116, 154461 (2021).
Hetherington, I. & Totary-Jain, H. Anti-atherosclerotic therapies: milestones, challenges, and emerging innovations. Mol. Ther. 30, 3106–3117 (2022).
Meza-Contreras, A. et al. Statin intolerance management: a systematic review. Endocrine 79, 430–436 (2023).
Banach, M., Stulc, T., Dent, R. & Toth, P. P. Statin non-adherence and residual cardiovascular risk: there is need for substantial improvement. Int. J. Cardiol. 225, 184–196 (2016).
Ahmad, F. B. & Anderson, R. N. The leading causes of death in the US for 2020. JAMA 325, 1829–1830 (2021).
Gaidai, O., Cao, Y. & Loginov, S. Global cardiovascular diseases death rate prediction. Curr. Probl. Cardiol. 48, 101622 (2023).
Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).
Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).
Libby, P. Inflammation in atherosclerosis—no longer a theory. Clin. Chem. 67, 131–142 (2021).
Orekhov, A. N. LDL and foam cell formation as the basis of atherogenesis. Curr. Opin. Lipidol. 29, 279–284 (2018).
Yuan, Y., Li, P. & Ye, J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3, 173–181 (2012).
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).
Engelen, S. E., Robinson, A. J., Zurke, Y.-X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).
Moreno-Gonzalez, M. A., Ortega-Rivera, O. A. & Steinmetz, N. F. Two decades of vaccine development against atherosclerosis. Nano Today 50, 101822 (2023).
Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arter. Thromb. Vasc. Biol. 19, 2847–2853 (1999).
Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24 (1999).
Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).
Namiki, M. et al. Intramuscular gene transfer of interleukin-10 cDNA reduces atherosclerosis in apolipoprotein E-knockout mice. Atherosclerosis 172, 21–29 (2004).
Yoshioka, T. et al. Adeno-associated virus vector-mediated interleukin-10 gene transfer inhibits atherosclerosis in apolipoprotein E-deficient mice. Gene Ther. 11, 1772–1779 (2004).
Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).
Kim, M. et al. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/-mice. Biomaterials 226, 119550 (2020).
Silver, A. B., Leonard, E. K., Gould, J. R. & Spangler, J. B. Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol. Sci. 42, 1064–1081 (2021).
Kita, T. et al. Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci. 947, 199–206 (2001).
Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110, 2047–2052 (2004).
Schiopu, A. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in Apobec-1−/−/low-density lipoprotein receptor−/− mice. J. Am. Coll. Cardiol. 50, 2313–2318 (2007).
Nilsson, J. & Carlsson, R. Oxidized LDL and Antibodies Thereto for the Treatment of Atherosclerotic Plaques. Publication No. WO 2008/104194 A1 (World Intellectual Property Organization, 2007).
Makabe, K., Tereshko, V., Gawlak, G., Yan, S. & Koide, S. Atomic-resolution crystal structure of Borrelia burgdorferi outer surface protein A via surface engineering. Protein Sci. 15, 1907–1914 (2006).
Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).
Gautier, E. L., Jakubzick, C. & Randolph, G. J. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arter. Thromb. Vasc. Biol. 29, 1412–1418 (2009).
Georgakis, M. K., Bernhagen, J., Heitman, L. H., Weber, C. & Dichgans, M. Targeting the CCL2–CCR2 axis for atheroprotection. Eur. Heart J. 43, 1799–1808 (2022).
Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).
Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).
Choudhury, R. P., Lee, J. M. & Greaves, D. R. Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med. 2, 309–315 (2005).
Maguire, E. M., Pearce, S. W. & Xiao, Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease. Vasc. Pharmacol. 112, 54–71 (2019).
Reardon, C. A. & Getz, G. S. Mouse models of atherosclerosis. Curr. Opin. Lipidol. 12, 167–173 (2001).
Matsuura, E., Hughes, G. R. & Khamashta, M. A. Oxidation of LDL and its clinical implication. Autoimmun. Rev. 7, 558–566 (2008).
Li, S. et al. Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques. Mol. Metab. 2, 256–269 (2013).
Peters, E. B. & Kibbe, M. R. Nanomaterials to resolve atherosclerosis. ACS Biomater. Sci. Eng. 6, 3693–3712 (2020).
Nong, J., Glassman, P. M. & Muzykantov, V. R. Targeting vascular inflammation through emerging methods and drug carriers. Adv. Drug Deliv. Rev. 184, 114180 (2022).
Shuvaev, V. V. et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25, 348 (2011).
Shuvaev, V. V. et al. Modulation of endothelial targeting by size of antibody–antioxidant enzyme conjugates. J. Control. Release 149, 236–241 (2011).
Hutmacher, C. & Neri, D. Antibody–cytokine fusion proteins: biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv. Drug Deliv. Rev. 141, 67–91 (2019).
Bootz, F. & Neri, D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov. Today 21, 180–189 (2016).
Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).
Galeazzi, M. et al. FRI0118 Dekavil (F8IL10)–Update on the Results of Clinical Trials Investigating the Immunocytokine in Patients with Rheumatoid Arthritis (BMJ Publishing Group, 2018).
Toshima, S. et al. Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease. Arter. Thromb. Vasc. Biol. 20, 2243–2247 (2000).
Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. N. Y. Acad. Sci. 947, 214–223 (2001).
Sziksz, E. et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediators Inflamm. 2015, 764641 (2015).
Getz, G. S. & Reardon, C. A. Do the Apoe−/− and Ldlr−/− mice yield the same insight on atherogenesis? Arter. Thromb. Vasc. Biol. 36, 1734–1741 (2016).
Sakkers, T. R. et al. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 384, 117279 (2023).
Gonçalves, I. et al. Identification of the target for therapeutic recombinant anti-apoB-100 peptide antibodies in human atherosclerotic lesions. Atherosclerosis 205, 96–100 (2009).
Watkins, E. A. et al. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci. Immunol. 6, eabe1801 (2021).
Butcher, M. J., Herre, M., Ley, K. & Galkina, E. Flow cytometry analysis of immune cells within murine aortas. J. Vis. Exp. https://doi.org/10.3791/2848 (2011).


















Leave a Reply