Long noncoding RNA regulation of immunity

Long noncoding RNA regulation of immunity

  • Iyer, M. K. et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kaur, G. et al. GENCODE: massively expanding the lncRNA catalog through capture long-read RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.10.29.620654 (2024).

  • Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Quinn, J. J. et al. Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes Dev. 30, 191–207 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlevaro-Fita, J. et al. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Res. 29, 208–222 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Morrison, T. A. et al. Evolving views of long noncoding RNAs and epigenomic control of lymphocyte state and memory. Cold Spring Harb. Perspect. Biol. 14, a037952 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, Y. G., Satpathy, A. T. & Chang, H. Y. Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol. 18, 962–972 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Peltier, D. C., Roberts, A. & Reddy, P. LNCing RNA to immunity. Trends Immunol. 43, 478–495 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Hacisuleyman, E. et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lewandowski, J. P. et al. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat. Commun. 10, 5137 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imamura, K. et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 53, 393–406 (2014).

    PubMed 
    CAS 

    Google Scholar
     

  • Azam, S. et al. The early macrophage response to pathogens requires dynamic regulation of the nuclear paraspeckle. Proc. Natl Acad. Sci. USA 121, e2312587121 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carpenter, S. et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341, 789–792 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, S. et al. WDR82-binding long noncoding RNA lncEry controls mouse erythroid differentiation and maturation. J. Exp. Med. 219, e20211688 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, T., Ou, J. & Yildirim, E. Xist exerts gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Nat. Commun. 13, 4464 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Atianand, M. K. et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165, 1672–1685 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gomez, J. A. et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152, 743–754 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kotzin, J. J. et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wheeler, B. D. et al. The lncRNA Malat1 inhibits miR-15/16 to enhance cytotoxic T cell activation and memory cell formation. Elife 12, RP87900 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Elguindy, M. M. & Mendell, J. T. NORAD-induced Pumilio phase separation is required for genome stability. Nature 595, 303–308 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, P. et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344, 310–313 (2014).

    PubMed 
    CAS 

    Google Scholar
     

  • Huang, D. et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol. 19, 1112–1125 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Sharma, S. et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc. Natl Acad. Sci. USA 108, 11381–11386 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rapicavoli, N. A. et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2, e00762 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P., Xu, J., Wang, Y. & Cao, X. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science 358, 1051–1055 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Sang, L. et al. Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nat. Metab. 3, 90–106 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Liu, J. et al. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50, 600–615 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Shmuel-Galia, L. et al. The lncRNA HOXA11os regulates mitochondrial function in myeloid cells to maintain intestinal homeostasis. Cell Metab. 35, 1441–1456 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Huang, N. et al. Natural display of nuclear-encoded RNA on the cell surface and its impact on cell interaction. Genome Biol. 21, 225 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flynn, R. A. et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 184, 3109–3124 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, X. et al. Small non-coding RNAs encapsulating mammalian cells fuel innate immunity. Preprint at bioRxiv https://doi.org/10.1101/2025.04.07.647669 (2025).

  • Xie, Y. et al. The modified RNA base acp3U is an attachment site for N-glycans in glycoRNA. Cell 187, 5228–5237 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Targeting a cell surface RNA-binding protein driving acute myeloid leukemia. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02695-9 (2025).

  • Graziano, V. R. et al. RNA N-glycosylation enables immune evasion and homeostatic efferocytosis. Nature 645, 784–792 (2025).

    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, N. et al. Cell surface RNAs control neutrophil recruitment. Cell 187, 846–860 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Núñez-Martínez, H. N. & Recillas-Targa, F. Emerging functions of lncRNA Loci beyond the transcript Itself. Int. J. Mol. Sci. 23, 6258 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mowel, W. K. et al. Group 1 innate lymphoid cell lineage identity is determined by a cis-regulatory element marked by a long non-coding RNA. Immunity 47, 435–449 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Isoda, T. et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell 171, 103–119 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abarrategui, I. & Krangel, M. S. Noncoding transcription controls downstream promoters to regulate T-cell receptor alpha recombination. EMBO J. 26, 4380–4390 (2007).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rothschild, G. et al. Noncoding RNA transcription alters chromosomal topology to promote isotype-specific class switch recombination. Sci. Immunol. 5, eaay5864 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ruiz-Orera, J., Messeguer, X., Subirana, J. A. & Alba, M. M. Long non-coding RNAs as a source of new peptides. Elife 3, e03523 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlevaro-Fita, J., Rahim, A., Guigó, R., Vardy, L. A. & Johnson, R. Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. RNA 22, 867–882 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang, S. et al. A lncRNA Dleu2-encoded peptide relieves autoimmunity by facilitating Smad3-mediated Treg induction. EMBO Rep. 25, 1208–1232 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Niu, L. et al. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci. Adv. 6, eaaz2059 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Barczak, W. et al. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat. Commun. 14, 1078 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, B. et al. Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression. Nat. Immunol. 18, 499–508 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Zemmour, D., Pratama, A., Loughhead, S. M., Mathis, D. & Benoist, C. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc. Natl Acad. Sci. USA 114, E3472–E3480 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. lncRNA-GM targets Foxo1 to promote T cell-mediated autoimmunity. Sci. Adv. 8, eabn9181 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vollmers, A. C. et al. A conserved long noncoding RNA, GAPLINC, modulates the immune response during endotoxic shock. Proc. Natl Acad. Sci. USA 118, e2016648118 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu, J. et al. IRF3-binding lncRNA-ISIR strengthens interferon production in viral infection and autoinflammation. Cell Rep. 37, 109926 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Liu, J. et al. The IRENA lncRNA converts chemotherapy-polarized tumor-suppressing macrophages to tumor-promoting phenotypes in breast cancer. Nat. Cancer 2, 457–473 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Wang, S. et al. An NF-κB-driven lncRNA orchestrates colitis and circadian clock. Sci. Adv. 6, eabb5202 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin, H. et al. The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response. Nat. Immunol. 20, 812–823 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, M. et al. Self-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response. Cell 173, 906–919 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Imam, H., Bano, A. S., Patel, P., Holla, P. & Jameel, S. The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Sci. Rep. 5, 8639 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, T. -C. et al. The long noncoding RNA HEAL regulates HIV-1 replication through epigenetic regulation of the HIV-1 promoter. mBio 10, e02016–e02019 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. An interferon-stimulated long non-coding RNA USP30-AS1 as an immune modulator in influenza A virus infection. PLoS Pathog. 21, e1012854 (2025).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc. Natl Acad. Sci. USA 112, E3883–E3892 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gcanga, L. et al. Host-directed targeting of LincRNA-MIR99AHG suppresses intracellular growth of Mycobacterium tuberculosis. Nucleic Acid Ther. 32, 421–437 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han, X. et al. LncRNA PTPRE-AS1 modulates M2 macrophage activation and inflammatory diseases by epigenetic promotion of PTPRE. Sci. Adv. 5, eaax9230 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Castellanos-Rubio, A. et al. A long noncoding RNA associated with susceptibility to celiac disease. Science 352, 91–95 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gonzalez-Moro, I. et al. The T1D-associated lncRNA Lnc13 modulates human pancreatic β cell inflammation by allele-specific stabilization of STAT1 mRNA. Proc. Natl Acad. Sci. USA 117, 9022–9031 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, Z. et al. Promotion of TLR7-MyD88-dependent inflammation and autoimmunity in mice through stem-loop changes in Lnc-Atg16l1. Nat. Commun. 15, 10224 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • Yu, B. et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 184, 1790–1803 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dou, D. R. et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 187, 733–749 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gartler, S. M. & Riggs, A. D. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17, 155–190 (1983).

    PubMed 
    CAS 

    Google Scholar
     

  • Plath, K., Mlynarczyk-Evans, S., Nusinow, D. A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36, 233–278 (2002).

    PubMed 
    CAS 

    Google Scholar
     

  • Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    PubMed 
    CAS 

    Google Scholar
     

  • Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    PubMed 
    CAS 

    Google Scholar
     

  • Lau, L. et al. An essential role for TASL in mouse autoimmune pathogenesis and Toll-like receptor signaling. Nat. Commun. 16, 968 (2025).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ricker, E. et al. Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice. Nat. Commun. 12, 4813 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rubtsov, A. V. et al. CD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCs. J. Immunol. 195, 71–79 (2015).

    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Excessive CD11c+Tbet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupus. Proc. Natl Acad. Sci. USA 116, 18550–18560 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Karnell, J. L. et al. Role of CD11c+ T-bet+ B cells in human health and disease. Cell Immunol. 321, 40–45 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovell, C. D., Jiwrajka, N., Amerman, H. K., Cancro, M. P. & Anguera, M. C. Xist deletion in B cells results in systemic lupus erythematosus phenotypes. Preprint at bioRxiv https://doi.org/10.1101/2024.05.15.594175 (2024).

  • Du, Y. et al. Altered X-chromosome inactivation of the TLR7/8 locus and heterogeneity of pDCs in systemic sclerosis. J. Exp. Med. 222, e20231809 (2025).

    PubMed 
    CAS 

    Google Scholar
     

  • Brooks, W. H., Satoh, M., Hong, B., Reeves, W. H. & Yang, T. P. Autoantibodies from an SLE patient immunostain the Barr body. Cytogenet. Genome Res. 97, 28–31 (2002).

    PubMed 
    CAS 

    Google Scholar
     

  • Hong, B., Reeves, P., Panning, B., Swanson, M. S. & Yang, T. P. Identification of an autoimmune serum containing antibodies against the Barr body. Proc. Natl Acad. Sci. USA 98, 8703–8708 (2001).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Crawford, J. D. et al. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI Insight 8, e169344 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, A. C. et al. Spen links RNA-mediated endogenous retrovirus silencing and X chromosome inactivation. Elife 9, e54508 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yu, P. et al. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37, 867–879 (2012).

    PubMed 
    CAS 

    Google Scholar
     

  • Yan, B. et al. Autoantibody hotspots reveal origin and impact of immunogenic XIST ribonucleoprotein complex. Preprint at bioRxiv https://doi.org/10.1101/2025.01.16.633465 (2025).

  • Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA 113, E2029–E2038 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pyfrom, S. et al. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proc. Natl Acad. Sci. USA 118, e2024624118 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hansen, J. E. et al. Targeting cancer with a lupus autoantibody. Sci. Transl. Med. 4, 157ra142 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisbart, R. H. et al. DNA-dependent targeting of cell nuclei by a lupus autoantibody. Sci. Rep. 5, 12022 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat. Biotechnol. 36, 1203–1210 (2018).

    CAS 

    Google Scholar
     

  • Wang, Y. et al. Genome-wide gain-of-function screening characterized lncRNA regulators for tumor immune response. Sci. Adv. 8, eadd0005 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Halasz, H. et al. CRISPRi screens identify the lncRNA, LOUP, as a multifunctional locus regulating macrophage differentiation and inflammatory signaling. Proc. Natl Acad. Sci. USA 121, e2322524121 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liang, W. -W. et al. Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells. Cell 187, 7637–7654 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Montero, J. J. et al. Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx. Nat. Methods 21, 584–596 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • S Zibitt, M., Hartford, C. C. R. & Lal, A. Interrogating lncRNA functions via CRISPR/Cas systems. RNA Biol. 18, 2097–2106 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pacalin, N. M. et al. Bidirectional epigenetic editing reveals hierarchies in gene regulation. Nat. Biotechnol. 43, 355–368 (2025).

    PubMed 
    CAS 

    Google Scholar
     

  • Horlbeck, M. A., Liu, S. J., Chang, H. Y., Lim, D. A. & Weissman, J. S. Fitness effects of CRISPR/Cas9-targeting of long noncoding RNA genes. Nat. Biotechnol. 38, 573–576 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deng, Y. et al. Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance. Nat. Commun. 13, 4739 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wagar, L. E. et al. Modeling human adaptive immune responses with tonsil organoids. Nat. Med. 27, 125–135 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Santos, A. J. M. et al. A human autoimmune organoid model reveals IL-7 function in celiac disease. Nature 632, 401–410 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ang, C. E. et al. The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. eLife 8, e41770 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganesh, V. S. et al. Neurodevelopmental disorder caused by deletion of CHASERR, a lncRNA gene. N. Engl. J. Med. 391, 1511–1518 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rom, A. et al. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat. Commun. 10, 5092 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miolo, G. et al. Identification of a de novo Xq26.2 microduplication encompassing FIRRE gene in a child with intellectual disability. Diagnostics 10, 1009 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allou, L. et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 592, 93–98 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Szafranski, P., Gambin, T., Karolak, J. A., Popek, E. & Stankiewicz, P. Lung-specific distant enhancer cis regulates expression of FOXF1 and lncRNA FENDRR. Hum. Mutat. 42, 694–698 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Andersen, R. E. et al. Chromosomal structural rearrangements implicate long non-coding RNAs in rare germline disorders. Hum. Genet. 143, 921–938 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • de Goede, O. M. et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184, 2633–2648 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, H. et al. A lncRNA from an inflammatory bowel disease risk locus maintains intestinal host-commensal homeostasis. Cell Res. 33, 372–388 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Engreitz, J., Lander, E. S. & Guttman, M. RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol. Biol. 1262, 183–197 (2015).

    PubMed 
    CAS 

    Google Scholar
     

  • Tsue, A. F. et al. Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping. Nat. Methods 21, 2058–2071 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wolin, E. et al. SPIDR enables multiplexed mapping of RNA-protein interactions and uncovers a mechanism for selective translational suppression upon cell stress. Cell 188, 5384–5402.e25 (2025).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • MAPIT-seq reveals both RBP targets and transcriptome-wide gene expression profiles. Nat. Methods 22, 1768–1769 (2025).

  • Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments in the nucleus. Cell 184, 5775–5790 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wen, X. et al. Single-cell multiplex chromatin and RNA interactions in ageing human brain. Nature 628, 648–656 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. The RNA-binding protein RRP1 brakes macrophage one-carbon metabolism to suppress autoinflammation. Nat. Commun. 16, 6880 (2025).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dodel, M. et al. TREX reveals proteins that bind to specific RNA regions in living cells. Nat. Methods 21, 423–434 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yi, H. et al. EcDNA-borne PVT1 fusion stabilizes oncogenic mRNAs. Preprint at bioRxiv https://doi.org/10.1101/2025.04.01.646515 (2025).

  • Brixi, G. et al. Genome modeling and design across all domains of life with Evo 2. Preprint at bioRxiv https://doi.org/10.1101/2025.02.18.638918 (2025).

  • Chiang, J. -C., Jiang, J., Newburger, P. E. & Lawrence, J. B. Trisomy silencing by XIST normalizes Down syndrome cell pathogenesis demonstrated for hematopoietic defects in vitro. Nat. Commun. 9, 5180 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, K., Czerminski, J. T. & Lawrence, J. B. Trisomy silencing by XIST: translational prospects and challenges. Hum. Genet 143, 843–855 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Navarro-Cobos, M. J., Morales-Guzman, S. I., Baldry, S. E. L. & Brown, C. J. Derivation of a minimal functional XIST by combining human and mouse interaction domains. Hum. Mol. Genet. 32, 1289–1300 (2023).

    PubMed 
    CAS 

    Google Scholar