Mechanotransduction through T cell receptors: consensus, controversies and future outlooks

Mechanotransduction through T cell receptors: consensus, controversies and future outlooks

  • Palucka, K. & Banchereau, J. Dendritic cells: a link between innate and adaptive immunity. J. Clin. Immunol. 19, 12–25 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rock, K. L., Lai, J. J. & Kono, H. Innate and adaptive immune responses to cell death. Immunol. Rev. 243, 191–205 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, J. S., Warrington, R., Watson, W. & Kim, H. L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14, 1–10 (2018).

    Article 

    Google Scholar
     

  • Feske, S., Wulff, H. & Skolnik, E. Y. Ion channels in innate and adaptive immunity. Ann. Rev. Immunol. 33, 291–353 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Harjunpää, H., Llort Asens, M., Guenther, C. & Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lämmermann, T. & Kastenmüller, W. Concepts of GPCR-controlled navigation in the immune system. Immunol. Rev. 289, 205–231 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coste, B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483, 176–181 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hardman, K., Goldman, A. & Pliotas, C. Membrane force reception: mechanosensation in G protein-coupled receptors and tools to address it. Curr. Opin. Physiol. 35, 100689 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, H.-H., Ng, K.-F., Chen, T.-C. & Tseng, W.-Y. Ligands and beyond: mechanosensitive adhesion GPCRs. Pharmaceuticals 15, 219 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilde, C., Mitgau, J., Suchý, T., Schöneberg, T. & Liebscher, I. Translating the force—mechano-sensing GPCRs. Am. J. Physiol. Cell Physiol. 322, C1047–C1060 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berrier, A. L. & Yamada, K. M. Cell–matrix adhesion. J. Cell. Physiol. 213, 565–573 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dustin, M. L. & Chan, A. C. Signaling takes shape in the immune system. Cell 103, 283–294 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, P. R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raulet, D. H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. S. et al. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat. Commun. 13, 3222 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutherland, T. E., Dyer, D. P. & Allen, J. E. The extracellular matrix and the immune system: a mutually dependent relationship. Science 379, eabp8964 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. et al. Mechanical communication and function regulation of immune cells. Fund. Res. pp. 2667–3258 (2024).

  • Hu, Y. et al. Molecular force imaging reveals that integrin-dependent mechanical checkpoint regulates Fcγ-receptor-mediated phagocytosis in macrophages. Nano Lett. 23, 5562–5572 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabdanov, E. D. et al. Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments. Nat. Commun. 12, 2815 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pannetier, C., Even, J. & Kourilsky, P. T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol. Today 16, 176–181 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 6–13 (1999).

    Article 

    Google Scholar
     

  • Linnemann, C. et al. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat. Med. 19, 1534–1541 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Ann. Rev. Immunol. 27, 591–619 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Billadeau, D. D. & Leibson, P. J. ITAMs versus ITIMs: striking a balance during cell regulation. J. Clin. Invest. 109, 161–168 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casas, J. et al. Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat. Commun. 5, 5624 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, Q. et al. Lck bound to coreceptor is less active than free Lck. Proc. Natl Acad. Sci. USA 117, 15809–15817 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Oers, N., Killeen, N. & Weiss, A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J. Exp. Med. 183, 1053–1062 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Chan, A. C., Iwashima, M., Turck, C. W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71, 649–662 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lo, W.-L. et al. Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat. Immunol. 19, 733–741 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorenz, U. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Immunol. Rev. 228, 342–359 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, J. P. & Lanier, L. L. Structure, func-tion, and serology of the T cell antigen receptor com-plex. Ann. Rev. Immunol. 5, 503–540 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Alam, S. M. et al. T-cell-receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kersh, G. J., Kersh, E. N., Fremont, D. H. & Allen, P. M. High-and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9, 817–826 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. et al. Tuning T cell receptor sensitivity through catch bond engineering. Science 376, eabl5282 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia, K. C. et al. An αβ T cell receptor structure at 2.5 Å and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia, K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colf, L. A. et al. How a single T cell receptor recognizes both self and foreign MHC. Cell 129, 135–146 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Felix, N. J. & Allen, P. M. Specificity of T-cell alloreactivity. Nat. Rev. Immunol. 7, 942–953 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Von Boehmer, H. & Kisielow, P. Self-nonself discrimination by T cells. Science 248, 1369–1373 (1990).

    Article 

    Google Scholar
     

  • Alam, S. M. et al. Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. Immunity 10, 227–237 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettmann, J. et al. The discriminatory power of the T cell receptor. eLife 10, e67092 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González, P. A. et al. T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc. Natl Acad. Sci. USA 102, 4824–4829 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carreño, L. J., González, P. A. & Kalergis, A. M. Modulation of T cell function by TCR/pMHC binding kinetics. Immunobiology 211, 47–64 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Govern, C. C., Paczosa, M. K., Chakraborty, A. K. & Huseby, E. S. Fast on-rates allow short dwell time ligands to activate T cells. Proc. Natl Acad. Sci. USA 107, 8724–8729 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schodin, B. A., Tsomides, T. J. & Kranz, D. M. Correlation between the number of T cell receptors required for T cell activation and TCR–ligand affinity. Immunity 5, 137–146 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snook, J. P., Kim, C. & Williams, M. A. TCR signal strength controls the differentiation of CD4+ effector and memory T cells. Sci. Immunol. 3, eaas9103 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, J.-R., Byeon, Y., Kim, D. & Park, S.-G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 52, 750–761 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. G., Xie, J., Su, Y. & Heath, J. R. T cell receptor sequences are the dominant factor contributing to the phenotype of CD8+ T cells with specificities against immunogenic viral antigens. Cell Rep. 42, 113279 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murugan, A., Huse, D. A. & Leibler, S. Speed, dissipation, and error in kinetic proofreading. Proc. Natl Acad. Sci. USA 109, 12034–12039 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schroeder, H. W. Jr. & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125, S41–S52 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batista, F. D., Iber, D. & Neuberger, M. S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tolar, P. Cytoskeletal control of B cell responses to antigens. Nat. Rev. Immunol. 17, 621–634 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Spriel, A. B. et al. Mac-1 (CD11b/CD18) is essential for Fc receptor–mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97, 2478–2486 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Goodridge, H. S., Underhill, D. M. & Touret, N. Mechanisms of Fc receptor and dectin-1 activation for phagocytosis. Traffic 13, 1062–1071 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bakalar, M. H. et al. Size-dependent segregation controls macrophage phagocytosis of antibody-opsonized targets. Cell 174, 131–142(2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staunton, D. E., Dustin, M. L., Erickson, H. P. & Springer, T. A. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61, 243–254 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dustin, M. L. The immunological synapse. Cancer Immunol. Res 2, 1023–1033(2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Ann. Rev. Immunol. 18, 165–184 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Natkanski, E. et al. B cells use mechanical energy to discriminate antigen affinities. Science 340, 1587–1590 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl Acad. Sci. USA 104, 20296–20301 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murugesan, S. et al. Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. J. Cell Biol. 215, 383–399 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, J., Murugesan, S., Betzig, E. & Hammer, J. A. Contractile actomyosin arcs promote the activation of primary mouse T cells in a ligand-dependent manner. PLoS ONE 12, e0183174 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dustin, M. L. A dynamic view of the immunological synapse. In Seminars in immunology (Elsevier) 17, 6 (2005).


    Google Scholar
     

  • Babich, A. et al. F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation. J. Cell Biol. 197, 775–787 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, J., Wu, X. S., Crites, T. & Hammer III, J. A. Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol. Biol. Cell 23, 834–852 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritter, A. T. et al. Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity 42, 864–876 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809(2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Ann. Rev Immunol. 21, 107–137 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Call, M. E., Pyrdol, J., Wiedmann, M. & Wucherpfennig, K. W. The organizing principle in the formation of the T cell receptor–CD3 complex. Cell 111, 967–979 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Call, M. E., Pyrdol, J. & Wucherpfennig, K. W. Stoichiometry of the T-cell receptor–CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO J. 23, 2348–2357 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C., Call, M. E. & Wucherpfennig, K. W. A membrane-proximal tetracysteine motif contributes to assembly of CD3δϵ and CD3γϵ dimers with the T cell receptor. J. Biol. Chem. 281, 36977–36984 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faure, S. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell–APC conjugation. Nat. Immunol. 5, 272–279 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harwood, N. E. & Batista, F. D. Early events in B cell activation. Ann. Rev. Immunol. 28, 185–210 (2009).

    Article 

    Google Scholar
     

  • Diakonova, M., Bokoch, G. & Swanson, J. A. Dynamics of cytoskeletal proteins during Fcγ receptor-mediated phagocytosis in macrophages. Mol. Biol. Cell 13, 402–411 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Degn, S. E. & Tolar, P. Towards a unifying model for B-cell receptor triggering. Nat. Rev. Immunol. 25, 77–91 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Der Merwe, P. A. & Dushek, O. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11, 47–55 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Courtney, A. H., Lo, W.-L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariuzza, R. A., Agnihotri, P. & Orban, J. The structural basis of T-cell receptor (TCR) activation: An enduring enigma. J. Biol. Chem. 295, 914–925 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kuhns, M. S. et al. Evidence for a functional sidedness to the αβTCR. Proc. Natl Acad. Sci. USA 107, 5094–5099 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Packard, T. A. & Cambier, J. C. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000prime Rep. 5, 40 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daëron, M. F. c receptor biology. Ann. Rev. Immunol. 15, 203–234 (1997).

    Article 

    Google Scholar
     

  • Bae, J. H. & Schlessinger, J. Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Mol. Cells 29, 443–448 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovacs, E., Zorn, J. A., Huang, Y., Barros, T. & Kuriyan, J. A structural perspective on the regulation of the epidermal growth factor receptor. Ann. Rev. Biochem. 84, 739–764 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krogsgaard, M. et al. Agonist/endogenous peptide–MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boniface, J. J. et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands. Immunity 9, 459–466 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trautmann, A. & Randriamampita, C. Initiation of TCR signalling revisited. Trends Immunol. 24, 425–428 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wooldridge, L. et al. Tricks with tetramers: how to get the most from multimeric peptide–MHC. Immunology 126, 147–164 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamad, A. R. A. et al. Potent T cell activation with dimeric peptide–major histocompatibility complex class II ligand: the role of CD4 coreceptor. J. Exp. Med. 188, 1633–1640 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fahmy, T. M., Bieler, J. G. & Schneck, J. P. Probing T cell membrane organization using dimeric MHC–Ig complexes. J. Immunol. Methods 268, 93–106 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daniels, M. A. & Jameson, S. C. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J. Exp. Med. 191, 335 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krogsgaard, M., Juang, J. & Davis, M. M. A role for “self” in T-cell activation. In Seminars in Immunology (Elsevier) 19, 4 (2007).


    Google Scholar
     

  • Juang, J. et al. Peptide-MHC heterodimers show that thymic positive selection requires a more restricted set of self-peptides than negative selection. J. Exp. Med. 207, 1223–1234 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Blanco, N. et al. A window of opportunity for cooperativity in the T cell receptor. Nat. Commun. 9, 2618 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schamel, W. W. et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 202, 493–503 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alarcón, B., Swamy, M., van Santen, H. M. & Schamel, W. W. T-cell antigen-receptor stoichiometry: pre-clustering for sensitivity. EMBO Rep. 7, 490–495 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R. et al. Increased sensitivity of antigen-experienced T cells through the enrichment of oligomeric T cell receptor complexes. Immunity 35, 375–387 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 39, 846–857 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Donoghue, G. P., Pielak, R. M., Smoligovets, A. A., Lin, J. J. & Groves, J. T. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife 2, e00778 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minguet, S., Swamy, M., Alarcón, B., Luescher, I. F. & Schamel, W. W. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanz, A.-L. et al. Allosteric activation of T cell antigen receptor signaling by quaternary structure relaxation. Cell Rep. 36, 109531 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakaash, D., Cook, G. P., Acuto, O. & Kalli, A. C. Multi-scale simulations of the T cell receptor reveal its lipid interactions, dynamics and the arrangement of its cytoplasmic region. PLoS Comput. Biol. 17, e1009232 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Eerden, F. J. et al. TCR-pMHC complex formation triggers CD3 dynamics. eLife 12, RP88065 (2023).


    Google Scholar
     

  • Alarcon, B. & Schamel, W. W. Allosteric changes underlie the outside-in transmission of activatory signals in the TCR. Immunol. Rev. 329, e13438 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, D. et al. Structural basis of assembly of the human T cell receptor–CD3 complex. Nature 573, 546–552 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gil, D., Schamel, W. W., Montoya, M. A., Sánchez-Madrid, F. & Alarcón, B. Recruitment of Nck by CD3ϵ reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gil, D., Schrum, A. G., Alarcón, B. & Palmer, E. T cell receptor engagement by peptide–MHC ligands induces a conformational change in the CD3 complex of thymocytes. J. Exp. Med. 201, 517–522 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Risueño, R. M., Gil, D., Fernández, E., Sánchez-Madrid, F. & Alarcón, B. Ligand-induced conformational change in the T-cell receptor associated with productive immune synapses. Blood 106, 601–608 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Risueno, R. M., Schamel, W. W. & Alarcón, B. T cell receptor engagement triggers its CD3ε and CD3ζ subunits to adopt a compact, locked conformation. PLoS ONE 3, e1747 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aivazian, D. & Stern, L. J. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nat. Struct. Mol. Biol. 7, 1023–1026 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ɛ cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagnon, E., Schubert, D. A., Gordo, S., Chu, H. H. & Wucherpfennig, K. W. Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain. J. Exp. Med. 209, 2423 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X. et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Connolly, A. et al. TMEM16F mediates bystander TCR-CD3 membrane dissociation at the immunological synapse and potentiates T cell activation. Sci. Signal. 14, eabb5146 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swamy, M. et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44, 1091–1101 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minguet, S. & Schamel, W. W. A permissive geometry model for TCR–CD3 activation. Trends Biochem. Sci. 33, 51–57 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Cholesterol inhibits TCR signaling by directly restricting TCR–CD3 core tunnel motility. Mol. Cell 82, 1278–1287 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-Martín, N. et al. Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3ɛ. Sci. Signal. 2, ra43–ra43 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Blanco, R., Borroto, A., Schamel, W., Pereira, P. & Alarcon, B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci. Signal. 7, ra115–ra115 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sušac, L. et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 185, 3201–3213(2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Notti, R. Q. et al. The resting and ligand-bound states of the membrane-embedded human T-cell receptor–CD3 complex. Nat. Commun. 16, 10996 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Merwe, P. A., McNamee, P. N., Davies, E. A., Barclay, A. N. & Davis, S. J. Topology of the CD2-CD48 cell-adhesion molecule complex: implications for antigen recognition by T cells. Curr. Biol. 5, 74–84 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Dustin, M. L. & Springer, T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freiberg, B. A. et al. Staging and resetting T cell activation in SMACs. Nat. Immunol. 3, 911–917 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K.-H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brameshuber, M. et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol. 19, 487–496 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Shea, J. J., McVicar, D. W., Bailey, T. L., Burns, C. & Smyth, M. J. Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. Proc. Natl Acad. Sci. USA 89, 10306–10310 (1992).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Razvag, Y., Neve-Oz, Y., Sajman, J., Reches, M. & Sherman, E. Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation. Nat. Commun. 9, 732 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irles, C. et al. CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat. Immunol. 4, 189–197 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, J. & Weiss, A. The tyrosine phosphatase CD148 is excluded from the immunologic synapse and down-regulates prolonged T cell signaling. J. Cell Biol. 162, 673–682 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B.-M. et al. The affinity of elongated membrane-tethered ligands determines potency of T cell receptor triggering. Front. Immunol. 8, 793 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James, J. R. & Vale, R. D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, Y., Wen, L., Altman, A. & Ley, K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat. Commun. 12, 3872 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettmann, J., Santos, A. M., Dushek, O. & Davis, S. J. Membrane ultrastructure and T cell activation. Front. Immunol. 9, 2152 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tacke, M., Hanke, G., Hanke, T. & Hünig, T. CD28-mediated induction of proliferation in resting T cells in vitro and in vivo without engagement of the T cell receptor: evidence for functionally distinct forms of CD28. Eur. J. Immunol. 27, 239–CD247 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lühder, F. et al. Topological requirements and signaling properties of T cell–activating, anti-CD28 antibody superagonists. J. Exp. Med. 197, 955–966 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paluch, C., Santos, A. M., Anzilotti, C., Cornall, R. J. & Davis, S. J. Immune checkpoints as therapeutic targets in autoimmunity. Front. Immunol. 9, 2306 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwak, M. et al. Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling. Nat. Cell Biol. 24, 1739–1753 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, Y. et al. Mechanosensing drives acuity of αβ T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, H.-K. et al. Catch bond models may explain how force amplifies TCR signaling and antigen discrimination. Nat. Commun. 14, 2616 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. T. et al. TCR mechanobiology: torques and tunable structures linked to early T cell signaling. Front. Immunol. 3, 76 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y., Reinherz, E. L. & Lang, M. J. αβ T cell receptor mechanosensing forces out serial engagement. Trends Immunol. 39, 596–609 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akitsu, A. et al. The αβ T cell receptor is an anisotropic mechanosenso. Sci. Adv. 10, eado4313 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. T. et al. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284, 31028–31037 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pryshchep, S., Zarnitsyna, V. I., Hong, J., Evavold, B. D. & Zhu, C. Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J. Immunol. 193, 68–76 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, H.-K. & Zhu, C. Catch bonds in immunology. Annu. Rev. Immunol. 43, 1 (2025).

    Article 

    Google Scholar
     

  • Das, D. K. et al. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc. Natl Acad. Sci. USA 112, 1517–1522 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, P. et al. Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Mol. Cell 73, 1015–1027(2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, J. et al. A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nat. Immunol. 19, 1379–1390(2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sibener, L. V. et al. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 174, 672–687 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zareie, P. et al. Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling. Science 372, eabe9124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mallis, R. J. et al. Molecular design of the γδT cell receptor ectodomain encodes biologically fit ligand recognition in the absence of mechanosensing. Proc. Natl Acad. Sci. USA 118, e2023050118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallis, R. J. et al. Biophysical and structural features of αβT-cell receptor mechanosensing: a paradigmatic shift in understanding T-cell activation. Immunol. Rev. 329, e13432 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang-Gonzalez, A. C., Mallis, R. J., Lang, M. J., Reinherz, E. L. & Hwang, W. Asymmetric framework motion of TCRαβ controls load-dependent peptide discrimination. eLife 13, e91881 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, J. J. et al. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35, 681–693 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Y., Li, Y. & Mariuzza, R. A. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol. Rev. 250, 32–48 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Qi, S., Krogsgaard, M., Davis, M. M. & Chakraborty, A. K. Molecular flexibility can influence the stimulatory ability of receptor–ligand interactions at cell–cell junctions. Proc. Natl Acad. Sci. USA 103, 4416–4421 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, K. M., Insaidoo, F. K. & Baker, B. M. Thermodynamics of T-cell receptor–peptide/MHC interactions: progress and opportunities. J. Mol. Recognit. 21, 275–287 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gálvez, J., Gálvez, J. J. & García-Peñarrubia, P. Is TCR/pMHC affinity a good estimate of the T-cell response? An answer based on predictions from 12 phenotypic models. Front. Immunol. 10, 349 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tas, J. M. et al. Visualizing antibody affinity maturation in germinal centers. Science 351, 1048–1054 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone, J. D., Chervin, A. S. & Kranz, D. M. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126, 165–176 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalergis, A. M. et al. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat. Immunol. 2, 229–234 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riquelme, E., Carreño, L. J., González, P. A. & Kalergis, A. M. The duration of TCR/pMHC interactions regulates CTL effector function and tumor-killing capacity. Eur. J. of Immunol. 39, 2259–2269 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Schamel, W. W., Risueño, R. M., Minguet, S., Ortíz, A. R. & Alarcón, B. A conformation-and avidity-based proofreading mechanism for the TCR–CD3 complex. Trends Immunol. 27, 176–182 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brockman, J. M. & Salaita, K. Mechanical proofreading: a general mechanism to enhance the fidelity of information transfer between cells. Front. Phys. 7, 14 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffett, A. S., Ganzinger, K. A. & Eckford, A. W. Comparing kinetic proofreading and kinetic segregation for T cell receptor activation. Phys. Rev. Res. 7, 023003 (2025).

    Article 
    CAS 

    Google Scholar
     

  • McKeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stepanek, O. et al. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 159, 333–345 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voisinne, G. et al. Kinetic proofreading through the multi-step activation of the ZAP70 kinase underlies early T cell ligand discrimination. Nat. Immunol. 23, 1355–1364 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, W.-L. et al. A single-amino acid substitution in the adaptor LAT accelerates TCR proofreading kinetics and alters T-cell selection, maintenance and function. Nat. Immunol. 24, 676–689 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aleksic, M. et al. Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32, 163–174 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousefi, O. S. et al. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. eLife 8, e42475 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valitutti, S., Müller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valitutti, S. & Lanzavecchia, A. Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol. Today 18, 299–304 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valitutti, S. The serial engagement model 17 years after: from TCR triggering to immunotherapy. Front. Immunol. 3, 272 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dushek, O., Das, R. & Coombs, D. A role for rebinding in rapid and reliable T cell responses to antigen. PLoS Comput. Biol. 5, e1000578 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, J., Yin, W. & Chen, W. Mathematical models of TCR initial triggering. Front. Immunol. 15, 1411614 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, R. et al. TCR catch bonds nonlinearly control CD8 cooperation to shape T cell specificity. Cell Res. 35, 265–83 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dushek, O. & Van der Merwe, P. A. An induced rebinding model of antigen discrimination. Trends Immunol. 35, 153–158 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corr, M. et al. T cell receptor-MHC class I peptide interactions: affinity, kinetics, and specificity. Science 265, 946–949 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rushdi, M. N. et al. Cooperative binding of T cell receptor and CD4 to peptide-MHC enhances antigen sensitivity. Nat. Commun. 13, 7055 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben Mkaddem, S., Benhamou, M. & Monteiro, R. C. Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front. Immunol. 10, 811 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuck, P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dustin, M. L., Ferguson, L. M., Chan, P. Y., Springer, T. A. & Golan, D. E. Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J. Cell Biol. 132, 465–474 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chesla, S. E., Selvaraj, P. & Zhu, C. Measuring two-dimensional receptor–ligand binding kinetics by micropipette. Biophys. J. 75, 1553–1572 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piper, J. W., Swerlick, R. A. & Zhu, C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys. J. 74, 492–513 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, G. Models for the specific adhesion of cells to cells. Science 200, 618–627(1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dustin, M. L., Bromley, S. K., Davis, M. M. & Zhu, C. Identification of self through two-dimensional chemistry and synapses. Annu. Rev. Cell Dev. Biol. 17, 133–157 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarnitsyna, V. & Zhu, C. T cell triggering: insights from 2D kinetics analysis of molecular interactions. Phys. Biol. 9, 045005 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, K., Cheng, X., Tilevik, A., Davis, S. J. & Zhu, C. In situ and in silico kinetic analyses of programmed cell death-1 (PD-1) receptor, programmed cell death ligands, and B7-1 protein interaction network. J. Biol. Chem. 292, 6799–6809 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W., Evans, E. A., McEver, R. P. & Zhu, C. Monitoring receptor–ligand interactions between surfaces by thermal fluctuations. Biophys. J. 94, 694–701 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huppa, J. B. et al. TCR–peptide–MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur. J. Immunol. 45, 2099–2110 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettmann, J. et al. Mechanical forces impair antigen discrimination by reducing differences in T-cell receptor/peptide–MHC off-rates. EMBO J. 42, e111841 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, H.-K. et al. Mechanotransduction governs CD40 function and underlies X-linked hyper-IgM syndrome. Sci. Adv. 10, eadl5815 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dembo, M., Torney, D., Saxman, K. & Hammer, D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. B 234, 55–83 (1988).

    CAS 

    Google Scholar
     

  • Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193(2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, J. et al. Force-regulated in situ TCR–peptide-bound MHC class II kinetics determine functions of CD4+ T cells. J. Immunol. 195, 3557–3564 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishi, H. et al. Neutrophil FcγRIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. J. Clin. Invest. 127, 3810–3826 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, C. et al. Nanobody-CD16 catch bond reveals NK cell mechanosensitivity. Biophys. J. 116, 1516–1526(2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, K. et al. Mechanical force regulates ligand binding and function of PD-1. Nat. Commun. 15, 8339 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C., Lou, J. & McEver, R. P. Catch bonds: physical models, structural bases, biological function and rheological relevance. Biorheology 42, 443–462 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Limozin, L. et al. TCR–pMHC kinetics under force in a cell-free system show no intrinsic catch bond, but a minimal encounter duration before binding. Proc. Natl Acad. Sci. USA 116, 16943–16948 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robert, P. et al. Kinetics and mechanics of two-dimensional interactions between T cell receptors and different activating ligands. Biophys. J. 102, 248–257 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosado, A. M. et al. Memory in repetitive protein–protein interaction series. APL Bioeng. 7, 1 (2023).

    Article 

    Google Scholar
     

  • Huppa, J. B. & Schutz, G. J. T-cell antigen recognition: catch-as-catch-can or catch-22? EMBO J. https://doi.org/10.15252/embj.2023113507 (2023).

  • Wang, J. et al. Profiling the origin, dynamics, and function of traction force in B cell activation. Sci. Signal. 11, eaai9192 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Stanley, P. et al. Intermediate-affinity LFA-1 binds α-actinin-1 to control migration at the leading edge of the T cell. EMBO J. 27, 62–75 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bashour, K. T. et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc. Natl Acad. Sci. USA 111, 2241–2246 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl Acad. Sci. USA. 113, 5610–5615(2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, V. P. et al. The magnitude of LFA-1/ICAM-1 forces fine-tune TCR-triggered T cell activation. Sci. Adv. 8, https://doi.org/10.1126/sciadv.abg4485 (2022).

  • Ma, V. P.-Y. et al. Ratiometric tension probes for mapping receptor forces and clustering at intermembrane junctions. Nano Lett. 16, 4552–4559 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowosad, C. R., Spillane, K. M. & Tolar, P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17, 870–877 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, R. et al. DNA probes that store mechanical information reveal transient piconewton forces applied by T cells. Proc. Natl Acad. Sci. USA 116, 16949–16954 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, B. T., Sarangapani, K. K., Lou, J., McEver, R. P. & Zhu, C. Force history dependence of receptor-ligand dissociation. Biophys. J. 88, 1458–1466 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Fast force loading disrupts molecular bond stability in human and mouse cell adhesions. Mol. Cell. Biomech. 16, 97 (2019).

    Article 

    Google Scholar
     

  • Sarangapani, K. K. et al. Regulation of catch bonds by rate of force application. J. Biol. Chem.286, 32749–32761 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, F. et al. Cyclic mechanical reinforcement of integrin–ligand interactions. Mol. Cell 49, 1060–1068 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B., Chen, W. & Zhu, C. Molecular force spectroscopy on cells. Annu. Rev. Phys. Chem. 66, 427–451 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H., Eskin, S. G., Ono, S., Zhu, C. & McIntire, L. V. Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. J. Cell Sci. 132, jcs216911 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Combs, J. D. et al. Measuring integrin force loading rates using a two-step DNA tension sensor. J. Am. Chem. Soc. 146, 23034–23043 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y. et al. DNA-based ForceChrono probes for deciphering single-molecule force dynamics in living cells. Cell 187, 3445–3459(2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, M. H. et al. Determination of single-molecule loading rate during mechanotransduction in cell adhesion. Science 383, 1374–1379 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. & Dunn, A. R. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985–3989 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, A. C. et al. Single molecule force measurements in living cells reveal a minimally tensioned integrin state. ACS Nano 10, 10745–10752 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Göhring, J. et al. Temporal analysis of T-cell receptor-imposed forces via quantitative single molecule FRET measurements. Nat. Commun. https://doi.org/10.1038/s41467-021-22775-z (2021).

  • Brenner, M. D. et al. Spider silk peptide is a compact, linear nanospring ideal for intracellular tension sensing. Nano Lett. 16, 2096–2102 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanagida, T. & Iwane, A. H. A large step for myosin. Proc. Natl Acad. Sci. USA 97, 9357–9359 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takagi, Y., Homsher, E. E., Goldman, Y. E. & Shuman, H. Force generation in single conventional actomyosin complexes under high dynamic load. Biophys. J. 90, 1295–1307 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Judokusumo, E., Tabdanov, E., Kumari, S., Dustin, M. L. & Kam, L. C. Mechanosensing in T lymphocyte activation. Biophys. J. 102, L5–L7 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ringer, P. et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14, 1090–1096 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarnitsyna, V. I. et al. Memory in receptor–ligand-mediated cell adhesion. Proc. Natl Acad. Sci. USA 104, 18037–18042 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rittase, W. Combined Experimental and Modeling Studies Reveal New Mechanisms in T cell Antigen Recognition.PhD thesis, Georgia Institute of Technology (2018).

  • Huse, M. Mechanoregulation of lymphocyte cytotoxicity. Nat. Rev. Immunol. 25, 680–695 (2025).

  • Göhring, J., Schrangl, L., Schütz, G. J. & Huppa, J. B. Mechanosurveillance: tiptoeing T cells. Front. Immunol. 13, 886328 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blumenthal, D., Chandra, V., Avery, L. & Burkhardt, J. K. Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. eLife 9, e55995 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar