Therapeutic targeting of neuroimmune mechanisms in neurodegeneration

Therapeutic targeting of neuroimmune mechanisms in neurodegeneration

  • Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022). The authors perform one of the largest AD GWAS to date, highlighting immune relevance for the disease.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019). This study maps promoter–enhancer interactomes in human brain cell types, linking noncoding AD risk variants to specific neuroimmune and glial regulatory programmes.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21, 404–412 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • D’Erchia, A. M. et al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci. Rep. 7, 10046 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malpetti, M. et al. Microglial activation in the frontal cortex predicts cognitive decline in frontotemporal dementia. Brain 146, 3221–3231 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023). This paper demonstrates that microglia-driven T cell infiltration into the brain parenchyma can directly promote neurodegeneration in tauopathy, cementing microglia–T cell crosstalk and adaptive immunity as a central pathogenic axis.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020). By revealing clonally expanded, antigen-experienced CD8+ T cells patrolling CSF in AD, this study identifies an antigen-specific adaptive immune response in the CNS as an active and targetable component of neurodegeneration.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Schepper, S. et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat. Neurosci. 26, 406–415 (2023). This work shows how perivascular cells instruct SPP1+ microglial phagocytic states and synaptic engulfment, mechanistically linking vascular niches to microglial neurotoxicity in AD models.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019). This single-cell atlas defines transcriptionally distinct brain macrophage populations by ontogeny and niche, setting the stage for dissecting microglia versus border-associated macrophage functions in disease.

    Article 
    PubMed 

    Google Scholar
     

  • Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rustenhoven, J. & Kipnis, J. Brain borders at the central stage of neuroimmunology. Nature 612, 417–429 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). This work identifies functional meningeal lymphatic vessels, which informed an updated view of CNS immune privilege and opened the modern era of brain border immunity.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silvin, A. et al. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 55, 1448–1465.e6 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022). This single-cell atlas of the human brain vasculature characterizes endothelial, mural, stromal and immune cell transcriptomes, revealing blood–brain barrier changes and implicating the human brain vasculature in AD pathogenesis.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Da Mesquita, S. et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature 593, 255–260 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustenhoven, J. et al. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage. J. Exp. Med. https://doi.org/10.1084/jem.20221929 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrence, A. R. et al. Microglia maintain structural integrity during fetal brain morphogenesis. Cell 187, 962–980.e19 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cossart, R. & Garel, S. Step by step: cells with multiple functions in cortical circuit assembly. Nat. Rev. Neurosci. 23, 395–410 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170 (1990).

    Article 
    PubMed 

    Google Scholar
     

  • Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stogsdill, J. A. et al. Pyramidal neuron subtype diversity governs microglia states in the neocortex. Nature 608, 750–756 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356.e6 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020). This paper elegantly demonstrates the functional link between microglia and neuronal activity.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cserep, C. et al. Microglial control of neuronal development via somatic purinergic junctions. Cell Rep. 40, 111369 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sokolova, D. et al. Astrocyte-derived MFG-E8 facilitates microglial synapse elimination in Alzheimer’s disease mouse models. Preprint at bioRxiv https://doi.org/10.1101/2024.08.31.606944 (2024).

  • Rueda-Carrasco, J. et al. Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 42, e113246 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNamara, N. B. et al. Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, N. et al. Human microglial state dynamics in Alzheimer’s disease progression. Cell 186, 4386–4403.e29 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837–854.e9 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • van Lengerich, B. et al. A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat. Neurosci. 26, 416–429 (2023). This study shows that a BBB transport vehicle-enabled TREM2 agonist enhances CNS exposure and boosts microglial metabolism and function in AD models, exemplifying a translational strategy to pharmacologically tune genetically implicated microglial pathways.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Guneykaya, D. et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 24, 2773–2783.e6 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Qiu, Y. et al. Definition of the contribution of an osteopontin-producing CD11c+ microglial subset to Alzheimer’s disease. Proc. Natl Acad. Sci. USA 120, e2218915120 (2023). This work defines the contribution of an osteopontin-producing CD11c+ microglial subset to AD.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weerakkody, T. N. et al. Loss of PILRA promotes microglial immunometabolism to reduce amyloid pathology in cell and mouse models of Alzheimer’s disease. Sci. Transl. Med. 17, eadw7428 (2025). This work identifies functional effects of loss of PILRA in microglia and demonstrates antibody-mediated inhibition as a potential therapeutic approach for AD.

    Article 
    PubMed 

    Google Scholar
     

  • Schlepckow, K. et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region. EMBO Mol. Med. 12, e11227 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feiten, A. F. et al. TREM2 expression level is critical for microglial state, metabolic capacity and efficacy of TREM2 agonism. Preprint at bioRxiv https://doi.org/10.1101/2024.07.18.604115 (2024).

  • Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015). This analysis demonstrates that drug targets supported by human genetic evidence have a significantly higher rate of success in clinical development.

    Article 
    PubMed 

    Google Scholar
     

  • Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6, 243ra286 (2014).

    Article 

    Google Scholar
     

  • Morenas-Rodriguez, E. et al. Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer’s disease: a longitudinal observational study. Lancet Neurol. 21, 329–341 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer’s disease variant Trem2R47H on murine myeloid cell function. J. Biol. Chem. 293, 12620–12633 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alector announces results from AL002 INVOKE-2 Phase 2 Trial in individuals with early Alzheimer’s disease and provides business update. Alector https://investors.alector.com/news-releases/news-release-details/alector-announces-results-al002-invoke-2-phase-2-trial (2024).

  • Jack, C. R. Jr. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep. 42, 112196 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreone, B. J. et al. Alzheimer’s-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nat. Neurosci. 23, 927–938 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020). In this work, the authors demonstrate that lipid droplet-accumulating microglia are functionally defective, which provides insights into specific microglial activities that could contribute to disease.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillot-Sestier, M.-V. et al. Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer’s disease. Commun. Biol. 4, 711 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. et al. Gender differences in risk factors for transition from mild cognitive impairment to Alzheimer’s disease: a CREDOS study. Compr. Psychiatry 62, 114–122 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, Y. et al. Dual roles of hexokinase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity. Nat. Metab. 4, 1756–1774 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Minhas, P. S. et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590, 122–128 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, X. et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med. 13, eabe5640 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Baik, S. H. et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 30, 493–507.e6 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Litvinchuk, A. et al. Amelioration of tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron 112, 384–403.e8 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fessler, M. B. The challenges and promise of targeting the liver X receptors for treatment of inflammatory disease. Pharmacol. Ther. 181, 1–12 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Holstege, H. et al. Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat. Genet. 54, 1786–1794 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noveir, S. D. et al. Effect of the ABCA1 agonist CS-6253 on amyloid-β and lipoprotein metabolism in cynomolgus monkeys. Alzheimers Res. Ther. 14, 87 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, H. Y., Choi, S., Iatan, I., Ruel, I. & Genest, J. Biomedical advances in ABCA1 transporter: from bench to bedside. Biomedicines https://doi.org/10.3390/biomedicines11020561 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, D. et al. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct. Target. Ther. 6, 7 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, L. L. et al. GPR34 knockdown relieves cognitive deficits and suppresses neuroinflammation in Alzheimer’s disease via the ERK/NF-κB signal. Neuroscience 528, 129–139 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Raju, K. et al. GPR34 regulates microglia state and loss-of-function rescues TREM2 metabolic dysfunction. Preprint at bioRxiv https://doi.org/10.1101/2025.03.28.646038 (2025).

  • Rathore, N. et al. Paired immunoglobulin-like type 2 receptor alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genet. 14, e1007427 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopatko Lindman, K. et al. PILRA polymorphism modifies the effect of APOE4 and GM17 on Alzheimer’s disease risk. Sci. Rep. 12, 13264 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Q. et al. PILRα and PILRβ have a siglec fold and provide the basis of binding to sialic acid. Proc. Natl Acad. Sci. USA 111, 8221–8226 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selkoe, D. J. Alzheimer’s disease is a synaptic failure. Science 298, 789–791 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016). This study demonstrates that complement-tagged synapses are eliminated by microglia early in AD models, providing a mechanistic link between the classical complement cascade, immune signalling and pathological synapse loss.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunkelberger, J. R. & Song, W. C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dejanovic, B. et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nat. Aging 2, 837–850 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep. 28, 2111–2123.e6 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dejanovic, B. et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron 100, 1322–1336.e7 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). This foundational work shows that the classical complement cascade instructs microglial synapse elimination in development, establishing a paradigm for immune sculpting of neural circuits that underpins later disease studies.

    Article 
    PubMed 

    Google Scholar
     

  • Asavapanumas, N., Tradtrantip, L. & Verkman, A. S. Targeting the complement system in neuromyelitis optica spectrum disorder. Expert Opin. Biol. Ther. 21, 1073–1086 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai, D. & Dugel, P. U. Complement cascade inhibition in geographic atrophy: a review. Eye 36, 294–302 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lansita, J. A. et al. Nonclinical development of ANX005: a humanized anti-C1q antibody for treatment of autoimmune and neurodegenerative diseases. Int. J. Toxicol. 36, 449–462 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Daskoulidou, N. et al. Complement receptor 1 is expressed on brain cells and in the human brain. Glia 71, 1522–1535 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zelek, W. M., Bevan, R. J. & Morgan, B. P. Targeting terminal pathway reduces brain complement activation, amyloid load and synapse loss, and improves cognition in a mouse model of dementia. Brain Behav. Immun. 118, 355–363 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Filipello, F. et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48, 979–991.e8 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Li, T. et al. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 39, e104136 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott-Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunner, G. et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat. Neurosci. 22, 1075–1088 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. et al. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci. Transl. Med. 15, eadf0141 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015). By revealing that TREM2 is a lipid-sensing receptor required to sustain microglial responses in AD models, this paper mechanistically connects a major genetic risk factor to disease-relevant microglial function.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erturk, A., Wang, Y. & Sheng, M. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J. Neurosci. 34, 1672–1688 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bader Lange, M. L. et al. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol. Dis. 29, 456–464 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, M. C. et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat. Neurosci. 13, 1090–1097 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carpanini, S. M. et al. Terminal complement pathway activation drives synaptic loss in Alzheimer’s disease models. Acta Neuropathol. Commun. 10, 99 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rua, R. & McGavern, D. B. Advances in meningeal immunity. Trends Mol. Med. 24, 542–559 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood-brain barrier in health and disease: important unanswered questions. J. Exp. Med. https://doi.org/10.1084/jem.20190062 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aav0492 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merlini, A. et al. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci. 25, 887–899 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, H. et al. The choroid plexus synergizes with immune cells during neuroinflammation. Cell 187, 4946–4963.e17 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daneman, R. The blood-brain barrier in health and disease. Ann. Neurol. 72, 648–672 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chow, B. W. & Gu, C. The molecular constituents of the blood-brain barrier. Trends Neurosci. 38, 598–608 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montagne, A. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jellinger, K. A. Pathology and pathogenesis of vascular cognitive impairment — a critical update. Front. Aging Neurosci. 5, 17 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jellinger, K. A. & Attems, J. Prevalence of dementia disorders in the oldest-old: an autopsy study. Acta Neuropathol. 119, 421–433 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kuo, P. Y. et al. Differences in lobar microbleed topography in cerebral amyloid angiopathy and hypertensive arteriopathy. Sci. Rep. 14, 3774 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiani Shabestari, S. et al. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer’s disease mice. Cell Rep. 39, 110961 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujita, M. et al. Cell subtype-specific effects of genetic variation in the Alzheimer’s disease brain. Nat. Genet. https://doi.org/10.1038/s41588-024-01685-y (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shade, L. M. P. et al. GWAS of multiple neuropathology endophenotypes identifies new risk loci and provides insights into the genetic risk of dementia. Nat. Genet. 56, 2407–2421 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tayler, H., Miners, J. S., Guzel, O., MacLachlan, R. & Love, S. Mediators of cerebral hypoperfusion and blood-brain barrier leakiness in Alzheimer’s disease, vascular dementia and mixed dementia. Brain Pathol. 31, e12935 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Storck, S. E. et al. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J. Clin. Invest. 126, 123–136 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Z. et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat. Neurosci. 18, 978–987 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uekawa, K. et al. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol. Neurodegen. 18, 73 (2023).

    Article 

    Google Scholar
     

  • Anfray, A. et al. A cell-autonomous role of border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury. Nat. Neurosci. 27, 2138–2151 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawkes, C. A. & McLaurin, J. Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA 106, 1261–1266 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solopova, E. et al. Fatal iatrogenic cerebral β-amyloid-related arteritis in a woman treated with lecanemab for Alzheimer’s disease. Nat. Commun. 14, 8220 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schonhoff, A. M. et al. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat. Commun. 14, 3754 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carare, R. O. et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34, 131–144 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science https://doi.org/10.1126/science.abf9277 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science https://doi.org/10.1126/science.abf7844 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehtinen, M. K. et al. The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J. Neurosci. 33, 17553–17559 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damkier, H. H., Brown, P. D. & Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93, 1847–1892 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Laman, J. D. & Weller, R. O. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J. Neuroimmune Pharmacol. 8, 840–856 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldmann, J. et al. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J. Leukoc. Biol. 80, 797–801 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Fitzpatrick, Z. et al. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature https://doi.org/10.1038/s41586-024-07202-9 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proulx, S. T. & Engelhardt, B. Central nervous system zoning: how brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J. Intern. Med. 292, 47–67 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, A. J., Yao, X., Dix, J. A., Jin, B. J. & Verkman, A. S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife https://doi.org/10.7554/eLife.27679 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, A. W. et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 131, 725–736 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szentistvanyi, I., Patlak, C. S., Ellis, R. A. & Cserr, H. F. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246, F835–F844 (1984).

    PubMed 

    Google Scholar
     

  • Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbott, N. J., Pizzo, M. E., Preston, J. E., Janigro, D. & Thorne, R. G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 135, 387–407 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hawkes, C. A. et al. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 121, 431–443 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antila, S. et al. Sustained meningeal lymphatic vessel atrophy or expansion does not alter Alzheimer’s disease-related amyloid pathology. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-024-00445-9 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merlini, M. et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron 101, 1099–1108.e6 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senatorov, V. V. Jr. et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaw8283 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, M. et al. Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science 375, eabm4459 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant, A. et al. Endothelial cells are heterogeneous in different brain regions and are dramatically altered in Alzheimer’s disease. J. Neurosci. 43, 4541–4557 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, N. et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease. Nat. Neurosci. 26, 970–982 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. et al. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat. Commun. 11, 4413 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, A. C. et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bien-Ly, N. et al. Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron 88, 289–297 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Pizzo, M. E. et al. Transferrin receptor-targeted anti-amyloid antibody enhances brain delivery and mitigates ARIA. Science 389, eads3204 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Grimm, H. P. et al. Delivery of the Brainshuttle amyloid-beta antibody fusion trontinemab to non-human primate brain and projected efficacious dose regimens in humans. MAbs 15, 2261509 (2023). This work describes an anti-amyloid antibody engineered to cross the BBB through engagement of Transferrin receptor, which results in improved plaque clearance.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay1359 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chew, K. S. et al. CD98hc is a target for brain delivery of biotherapeutics. Nat. Commun. 14, 5053 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039.e13 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramakrishnan, A. et al. Epigenetic dysregulation in Alzheimer’s disease peripheral immunity. Neuron https://doi.org/10.1016/j.neuron.2024.01.013 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krogsgaard, M. & Davis, M. M. How T cells ‘see’ antigen. Nat. Immunol. 6, 239–245 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchetti, L. & Engelhardt, B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc. Biol. 2, H1–H18 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlager, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Carrithers, M. D., Visintin, I., Kang, S. J. & Janeway, C. A. Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123, 1092–1101 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Comi, C., Fleetwood, T. & Dianzani, U. The role of T cell apoptosis in nervous system autoimmunity. Autoimmun. Rev. 12, 150–156 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Pappalardo, J. L. et al. Transcriptomic and clonal characterization of T cells in the human central nervous system. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abb8786 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 11, 247 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640.e4 (2020). This study defines a functional link between T cells and microglial development, with measurable effects on brain development.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro, M. et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aay5199 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brynskikh, A., Warren, T., Zhu, J. & Kipnis, J. Adaptive immunity affects learning behavior in mice. Brain Behav. Immun. 22, 861–869 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Mousa, A. & Bakhiet, M. Role of cytokine signaling during nervous system development. Int. J. Mol. Sci. 14, 13931–13957 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Togo, T. et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Merlini, M., Kirabali, T., Kulic, L., Nitsch, R. M. & Ferretti, M. T. Extravascular CD3+ T cells in brains of Alzheimer disease patients correlate with tau but not with amyloid pathology: an immunohistochemical study. Neurodegener. Dis. 18, 49–56 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, G. P. et al. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain 144, 2047–2059 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh, S. E. et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc. Natl Acad. Sci. USA 113, E1316–E1325 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perlmutter, L. S., Scott, S. A., Barron, E. & Chui, H. C. MHC class II-positive microglia in human brain: association with Alzheimer lesions. J. Neurosci. Res. 33, 549–558 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Faridar, A. et al. Restoring regulatory T-cell dysfunction in Alzheimer’s disease through ex vivo expansion. Brain Commun. 2, fcaa112 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marin-Rodero, M. et al. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci. Immunol. 10, eadu2910 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dansokho, C. et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139, 1237–1251 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Baek, H. et al. Neuroprotective effects of CD4+CD25+Foxp3+regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget 7, 69347–69357 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baruch, K. et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6, 7967 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, W. et al. CXCR6 orchestrates brain CD8+ T cell residency and limits mouse Alzheimer’s disease pathology. Nat. Immunol. 24, 1735–1747 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorfi, M. et al. Infiltrating CD8+ T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model. Nat. Neurosci. 26, 1489–1504 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. T. et al. A change of PD-1/PD-L1 expression on peripheral T cell subsets correlates with the different stages of Alzheimer’s disease. Cell Biosci. 12, 162 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thonhoff, J. R. et al. Combined regulatory T-lymphocyte and IL-2 treatment is safe, tolerable, and biologically active for 1 year in persons with amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000200019 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Lee, S. J. et al. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol. 138, 237–250 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diks, A. M. et al. Carriers of the p.P522R variant in PLCγ2 have a slightly more responsive immune system. Mol. Neurodegener. 18, 25 (2023). This study demonstrates a protective PLCG2 variant affected peripheral immune cell function, suggesting a connection between activity of the peripheral immune system and reduced AD risk.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takalo, M. et al. The Alzheimer’s disease-associated protective Plcγ2-P522R variant promotes immune functions. Mol. Neurodegener. 15, 52 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, A. P. et al. Genetic variants of phospholipase C-γ2 alter the phenotype and function of microglia and confer differential risk for Alzheimer’s disease. Immunity 56, 2121–2136.e6 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magno, L., Bunney, T. D., Mead, E., Svensson, F. & Bictash, M. N. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Mol. Neurodegener. 16, 22 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olufunmilayo, E. O. & Holsinger, R. M. D. INPP5D/SHIP1: expression, regulation and roles in Alzheimer’s disease pathophysiology. Genes https://doi.org/10.3390/genes14101845 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, V. et al. INPP5D regulates inflammasome activation in human microglia. Nat. Commun. 14, 7552 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedicone, C. et al. Pan-SHIP1/2 inhibitors promote microglia effector functions essential for CNS homeostasis. J. Cell Sci. https://doi.org/10.1242/jcs.238030 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedicone, C. et al. Discovery of a novel SHIP1 agonist that promotes degradation of lipid-laden phagocytic cargo by microglia. iScience 25, 104170 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Govindarajulu, M. et al. Role of cGAS-Sting signaling in Alzheimer’s disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24098151 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, Z., Mei, J., Guo, H., Zhu, J. & Wang, C. Intervention of cGAS–STING signaling in sterile inflammatory diseases. J. Mol. Cell Biol. https://doi.org/10.1093/jmcb/mjac005 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Z. et al. Development of VHL-recruiting STING PROTACs that suppress innate immunity. Cell Mol. Life Sci. 80, 149 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sala Frigerio, C. et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306.e6 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

  • Fox, R. J. et al. Tolebrutinib in nonrelapsing secondary progressive multiple sclerosis. N. Engl. J. Med. 392, 1883–1892 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Tolebrutinib designated breakthrough therapy by the FDA for non-relapsing secondary progressive multiple sclerosis. Sanofi https://www.sanofi.com/en/media-room/press-releases/2024/2024-12-13-06-00-00-2996609 (2024).

  • Yshii, L. et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat. Immunol. 23, 878–891 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doglio, M. et al. Regulatory T cells expressing CD19-targeted chimeric antigen receptor restore homeostasis in systemic lupus erythematosus. Nat. Commun. 15, 2542 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ossenkoppele, R., van der Kant, R. & Hansson, O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 21, 726–734 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Salvado, G. et al. Disease staging of Alzheimer’s disease using a CSF-based biomarker model. Nat. Aging https://doi.org/10.1038/s43587-024-00599-y (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, E. C. B. et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 26, 769–780 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai, Y. L. et al. Plasma osteopontin as a biomarker of Alzheimer’s disease and vascular cognitive impairment. Sci. Rep. 11, 4010 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, H. et al. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer’s disease. Alzheimers Res. Ther. 16, 235 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pesamaa, I. et al. A microglial activity state biomarker panel differentiates FTD-granulin and Alzheimer’s disease patients from controls. Mol. Neurodegener. 18, 70 (2023). This work identifies candidate microglial biomarkers that could hold potential for monitoring the state of this key disease-relevant cell type in accessible patient biofluids.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shojaei, M. et al. PET imaging of microglia in Alzheimer’s disease using copper-64 labeled TREM2 antibodies. Theranostics 14, 6319–6336 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phongpreecha, T. et al. Single-cell peripheral immunoprofiling of Alzheimer’s and Parkinson’s diseases. Sci. Adv. https://doi.org/10.1126/sciadv.abd5575 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salloway, S. et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 79, 13–21 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadiz, M. P. et al. Aducanumab anti-amyloid immunotherapy induces sustained microglial and immune alterations. J. Exp. Med. https://doi.org/10.1084/jem.20231363 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med. https://doi.org/10.1084/jem.20200785 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larson, K. C. et al. VGL101: an immunotherapy that enhances microglial survival for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) (P9-9.013). Neurology 102, 2490 (2024).

    Article 

    Google Scholar
     

  • Kumar, R. et al. A phase 2 open-label study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of intravenous ANX005 in patients with, or at risk of, manifest Huntington’s disease (HD) (S32.009). Neurology 100, 3366 (2023).

    Article 

    Google Scholar
     

  • Kantor, A. B., Akassoglou, K. & Stavenhagen, J. B. Fibrin-targeting immunotherapy for dementia. J. Prev. Alzheimers Dis. 10, 647–660 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hincelin-Mery, A. et al. Safety, pharmacokinetics, and target engagement of a brain penetrant RIPK1 inhibitor, SAR443820 (DNL788), in healthy adult participants. Clin. Transl. Sci. 17, e13690 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Harrison, D. et al. Discovery of clinical candidate NT-0796, a brain-penetrant and highly potent NLRP3 inflammasome inhibitor for neuroinflammatory disorders. J. Med. Chem. 66, 14897–14911 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Tengesdal, I. W., Banks, M., Dinarello, C. A. & Marchetti, C. Screening NLRP3 drug candidates in clinical development: lessons from existing and emerging technologies. Front. Immunol. 15, 1422249 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, R. C. et al. Dual targeting of transferrin receptor and CD98hc enhances brain exposure of large molecules. Cell Rep. 44, 116038 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • An, S. et al. A brain-shuttled antibody targeting alpha synuclein aggregates for the treatment of synucleinopathies. npj Parkinsons Dis. 11, 254 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar