mRNA vaccination overcomes haemozoin-mediated impairment of whole-parasite malaria vaccines in mice

mRNA vaccination overcomes haemozoin-mediated impairment of whole-parasite malaria vaccines in mice

  • World Health Organization World Malaria Report 2023 (World Health Organization, 2024).

  • Putrianti, E. D., Silvie, O., Kordes, M., Borrmann, S. & Matuschewski, K. Vaccine-like immunity against malaria by repeated causal-prophylactic treatment of liver-stage Plasmodium parasites. J. Infect. Dis. 199, 899–903 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Nunes-Cabaço, H., Moita, D. & Prudêncio, M. Five decades of clinical assessment of whole-sporozoite malaria vaccines. Front. Immunol. 13, 977472 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nussenzweig, R., Vanderberg, J., Most, H. & Orton, C. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216, 160–162 (1967).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiss, W. R. & Jiang, C. G. Protective CD8+ T lymphocytes in primates immunized with malaria sporozoites. PLoS ONE 7, e31247 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishizuka, A. S. et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat. Med. 22, 614–623 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334, 475–480 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clyde, D. F., Most, H., McCarthy, V. C. & Vanderberg, J. P. Immunization of man against sporozite-induced falciparum malaria. Am. J. Med. Sci. 266, 169–177 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Ruiz, D. et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valencia-Hernandez, A. M. et al. A natural peptide antigen within the Plasmodium ribosomal protein RPL6 confers liver TRM cell-mediated immunity against malaria in mice. Cell Host Microbe 27, 950–962.e957 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lefebvre, M. N. et al. Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria. Cell Rep. 37, 109956 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss, W. R., Sedegah, M., Beaudoin, R. L., Miller, L. H. & Good, M. F. CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc. Natl Acad. Sci. USA 85, 573–576 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Menezes, M. N. et al. Long lived liver-resident memory T cells of biased specificities for abundant sporozoite antigens drive malaria protection by radiation-attenuated sporozoite vaccination. PLoS Pathog. 21, e1012731 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doolan, D. L. & Hoffman, S. L. The complexity of protective immunity against liver-stage malaria. J. Immunol. 165, 1453–1462 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guebre-Xabier, M., Schwenk, R. & Krzych, U. Memory phenotype CD8+ T cells persist in livers of mice protected against malaria by immunization with attenuated Plasmodium berghei sporozoites. Eur. J. Immunol. 29, 3978–3986 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, N. W., Butler, N. S., Badovinac, V. P. & Harty, J. T. Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites. PLoS Pathog. 6, e1000998 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tinto, H. et al. Long-term incidence of severe malaria following RTS,S/AS01 vaccination in children and infants in Africa: an open-label 3-year extension study of a phase 3 randomised controlled trial. Lancet Infect. Dis. 19, 821–832 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sissoko, M. S. et al. Safety and efficacy of PfSPZ vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect. Dis. 17, 498–509 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moita, D. & Prudêncio, M. Whole-sporozoite malaria vaccines: where we are, where we are going. EMBO Mol. Med. 16, 2279–2289 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epstein, J. E. et al. Protection against Plasmodium falciparum malaria by PfSPZ vaccine. JCI Insight 2, e89154 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Dorst, M. M. A. R. et al. Immunological factors linked to geographical variation in vaccine responses. Nat. Rev. Immunol. 24, 250–263 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Long, C. A. & Zavala, F. Malaria vaccines and human immune responses. Curr. Opin. Microbiol. 32, 96–102 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganley, M. et al. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat. Immunol. 24, 1487–1498 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meibalan, E. & Marti, M. Biology of malaria transmission. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a025452 (2017).

  • Butler, N. S. et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat. Immunol. 13, 188–195 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lin, J. W. et al. The subcellular location of ovalbumin in Plasmodium berghei blood stages influences the magnitude of T-cell responses. Infect. Immun. 82, 4654–4665 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, S. R. et al. Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol. Cell Biol. 78, 110–117 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shibui, A. et al. CD4+ T cell response in early erythrocytic stage malaria: Plasmodium berghei infection in BALB/c and C57BL/6 mice. Parasitol. Res. 105, 281–286 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Afonso, A. et al. Plasmodium chabaudi chabaudi malaria parasites can develop stable resistance to atovaquone with a mutation in the cytochrome b gene. Malar. J. 9, 135 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalapati, T. & Moore, J. M. Hemozoin: a complex molecule with complex activities. Curr. Clin. Microbiol. Rep. 8, 87–102 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frita, R., Carapau, D., Mota, M. M. & Hänscheid, T. In vivo hemozoin kinetics after clearance of Plasmodium berghei infection in mice. Malar. Res. Treat. 2012, 373086 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levesque, M. A., Sullivan, A. D. & Meshnick, S. R. Splenic and hepatic hemozoin in mice after malaria parasite clearance. J. Parasitol. 85, 570–573 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shio, M. T. et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 5, e1000559 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Pack, A. D. et al. Hemozoin-mediated inflammasome activation limits long-lived anti-malarial immunity. Cell Rep. 36, 109586 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coban, C. et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19–25 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X., Gowda, N. M., Kumar, S. & Gowda, D. C. Protein–DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J. Immunol. 184, 4338–4348 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coban, C. et al. Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe 7, 50–61 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colin, M. et al. Haemoglobin interferes with the ex vivo luciferase luminescence assay: consequence for detection of luciferase reporter gene expression in vivo. Gene Ther. 7, 1333–1336 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teijaro, J. R. & Farber, D. L. COVID-19 vaccines: modes of immune activation and future challenges. Nat. Rev. Immunol. 21, 195–197 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616–622 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassert, M. et al. Regenerating murine CD8+ lung tissue resident memory T cells after targeted radiation exposure. J. Exp. Med. https://doi.org/10.1084/jem.20231144 (2024).

  • Olsen, T. M., Stone, B. C., Chuenchob, V. & Murphy, S. C. Prime-and-trap malaria vaccination to generate protective CD8+ liver-resident memory T cells. J. Immunol. 201, 1984–1993 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacMillen, Z. et al. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. npj Vaccines 9, 12 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurup, S. P. et al. Monocyte-derived CD11c+ cells acquire Plasmodium from hepatocytes to prime CD8 T cell immunity to liver-stage malaria. Cell Host Microbe 25, 565–577.e566 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodberry, T. et al. Low-level Plasmodium falciparum blood-stage infection causes dendritic cell apoptosis and dysfunction in healthy volunteers. J. Infect. Dis. 206, 333–340 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwarzer, E., Turrini, F., Giribaldi, G., Cappadoro, M. & Arese, P. Phagocytosis of P. falciparum malarial pigment hemozoin by human monocytes inactivates monocyte protein kinase C. Biochim. Biophys. Acta 1181, 51–54 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sissoko, M. S. et al. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. Lancet Infect. Dis. 22, 377–389 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyberghein, A., Deroost, K., Schwarzer, E., Arese, P. & Van den Steen, P. E. Immunopathological effects of malaria pigment or hemozoin and other crystals. Biofactors 40, 59–78 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwarzer, E., Skorokhod, O. A., Barrera, V. & Arese, P. Hemozoin and the human monocyte—a brief review of their interactions. Parassitologia 50, 143–145 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Boura, M., Frita, R., Góis, A., Carvalho, T. & Hänscheid, T. The hemozoin conundrum: is malaria pigment immune-activating, inhibiting, or simply a bystander?. Trends Parasitol. 29, 469–476 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Millington, O. R., Di Lorenzo, C., Phillips, R. S., Garside, P. & Brewer, J. M. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function. J. Biol. 5, 5 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham, T.-T., Lamb, T. J., Deroost, K., Opdenakker, G. & Van den Steen, P. E. Hemozoin in malarial complications: more questions than answers. Trends Parasitol. 37, 226–239 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding, C. L., Villarino, N. F., Valente, E., Schwarzer, E. & Schmidt, N. W. Plasmodium impairs antibacterial innate immunity to systemic infections in part through hemozoin-bound bioactive molecules. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2020.00328 (2020).

  • Wilson, N. S. et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat. Immunol. 7, 165–172 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ocaña-Morgner, C., Mota, M. M. & Rodriguez, A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J. Exp. Med. 197, 143–151 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarzer, E., Kuhn, H., Valente, E. & Arese, P. Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood 101, 722–728 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casals-Pascual, C. et al. Suppression of erythropoiesis in malarial anemia is associated with hemozoin in vitro and in vivo. Blood 108, 2569–2577 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parroche, P. et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl Acad. Sci. USA 104, 1919–1924 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalantari, P. et al. Dual engagement of the NLRP3 and AIM2 inflammasomes by Plasmodium-derived hemozoin and DNA during malaria. Cell Rep. 6, 196–210 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco, A. et al. Hemozoin-induced IFN-γ production mediates innate immune protection against sporozoite infection. Microbes Infect. https://doi.org/10.1016/j.micinf.2024.105343 (2024).

  • Kularatne, R. N., Crist, R. M. & Stern, S. T. The future of tissue-targeted lipid nanoparticle-mediated nucleic acid delivery. Pharmaceuticals https://doi.org/10.3390/ph15070897 (2022).

  • Eappen, A. G. et al. In vitro production of infectious Plasmodium falciparum sporozoites. Nature 612, 534–539 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villarino, N. F. et al. Composition of the gut microbiota modulates the severity of malaria. Proc. Natl Acad. Sci. USA 113, 2235–2240 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doll, K. L., Pewe, L. L., Kurup, S. P. & Harty, J. T. Discriminating protective from nonprotective Plasmodium-specific CD8+ T cell responses. J. Immunol. 196, 4253–4262 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurup, S. P. et al. Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4. Nat. Med. 23, 1220–1225 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badovinac, V. P., Messingham, K. A. N., Jabbari, A., Haring, J. S. & Harty, J. T. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat. Med. 11, 748–756 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pisciotta, J. M., Scholl, P. F., Shuman, J. L., Shualev, V. & Sullivan, D. J. Quantitative characterization of hemozoin in Plasmodium berghei and vivax. Int. J. Parasitol. Drugs Drug Resist. 7, 110–119 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Z., Reznikoff, G., Dranoff, G. & Rock, K. L. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723–2730 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez, F., Zhang, J. & Whitton, J. L. DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. J. Virol. 71, 8497–8503 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenblum, D. et al. CRISPR–Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 6, eabc9450 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar