Novel anti-ITGA4 monoclonal antibody induces cell death via large pore formation in NK/T-cell lymphoma cells

Novel anti-ITGA4 monoclonal antibody induces cell death via large pore formation in NK/T-cell lymphoma cells

  • Shiravand, Y. et al. Immune checkpoint inhibitors in cancer therapy. Front. Oncol. 12, 1234–1245 (2022).


    Google Scholar
     

  • Scott, L. J. Brentuximab vedotin: A review in CD30-positive hodgkin lymphoma. Drugs 77, 435–445 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramos, C. A., Heslop, H. E. & Brenner, M. K. CAR-T cell therapy for lymphoma. Annu. Rev. Med. 67, 165–183 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Pasqui, D. M., Latorraca, C. D. O. C., Pacheco, R. L. & Riera, R. CAR-T cell therapy for patients with hematological malignancies. A systematic review. Eur. J. Haematol. 109, 601–618 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Batlevi, C. L., Matsuki, E., Brentjens, R. J. & Younes, A. Novel immunotherapies in lymphoid malignancies. Nat. Rev. Clin. Oncol. 13, 25–40 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Ishida, T. & Ueda, R. Antibody therapy for adult T-cell leukemia-lymphoma. Int. J. Hematol. 94, 443–452 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kesavan, M., Eyre, T. A. & Collins, G. P. Front-line treatment of high grade B cell non-Hodgkin lymphoma. Curr. Hematol. Malig. Rep. 14, 207–218 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niitsu, N. Current treatment strategy of diffuse large B-cell lymphomas. Int. J. Hematol. 92, 231–237 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tobinai, K., Klein, C., Oya, N. & Fingerle-Rowson, G. A review of obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv. Ther. 34, 324–356 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ishitsuka, K. et al. Safety and effectiveness of Mogamulizumab in relapsed or refractory adult T-cell leukemia-lymphoma. Eur. J. Haematol. 102, 407–415 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. et al. Safety and efficacy profile of Mogamulizumab (Poteligeo) in the treatment of cancers: An update evidence from 14 studies. BMC Cancer 21, 618 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, P. & Marcus, R. Monoclonal antibody therapy for lymphoma. Blood Rev. 17, 143–152 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Tse, E. & Kwong, Y. L. How I treat NK/T-cell lymphomas. Blood 121, 4997–5005 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kwong, Y. L. Natural killer-cell malignancies: Diagnosis and treatment. Leukemia 19, 2186–2194 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Sánchez-Romero, C. et al. Extranodal NK/T cell lymphoma, nasal type: An updated overview. J. Hematol. Oncol. 15, 345–352 (2022).


    Google Scholar
     

  • Oshimi, K. Progress in understanding and managing natural killer-cell malignancies. Br. J. Haematol. 139, 532–544 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Qi, S. N. et al. First-line non-anthracycline-based chemotherapy for extranodal nasal-type NK/T-cell lymphoma: A retrospective analysis from the CLCG. Blood Adv. 4, 3141–3153 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi, M. et al. Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: The NK-Cell tumor study group study. J. Clin. Oncol. 29, 4410–4416 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kwong, Y. L. et al. SMILE for natural killer/T-cell lymphoma: Analysis of safety and efficacy from the Asia lymphoma study group. Blood 120, 2973–2980 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X. et al. DDGP versus SMILE in newly diagnosed advanced natural killer/t-cell lymphoma: A randomized controlled, multicenter, open-label study in China. Clin. Cancer Res. 22, 5223–5228 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yi, W. et al. New approaches for treatment of advanced extranodal NK/T-cell lymphoma. Cancer Manag. Res. 14, 401–407 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwong, Y. L. et al. PD1 Blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 129, 2437–2442 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Golay, J. & Taylor, R. P. The role of complement in the mechanism of action of therapeutic anti-cancer mAbs. Antibodies 9, 58 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fernández-Marrero, Y. & López-Requena, A. Lonely killers: Effector cell- and complement-independent non-proapoptotic cytotoxic antibodies inducing membrane lesions. mAbs 3, 528–534 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honeychurch, J. et al. Antibody-induced nonapoptotic cell death in human lymphoma and leukemia cells is mediated through a novel reactive oxygen species-dependent pathway. Blood 119, 3523–3533 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanov, A. et al. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J. Clin. Invest. 119, 2143–2159 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuoka, S. et al. Establishment of a therapeutic anti-pan HLA-class II monoclonal antibody that directly induces lymphoma cell death via large pore formation. PLOS ONE 11, e0150496 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuoka, S. et al. A novel type of cell death of lymphocytes induced by a monoclonal antibody without participation of complement. J. Exp. Med. 181, 2007–2015 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Matsuoka, S. et al. A monoclonal antibody to the alpha2 domain of murine major histocompatibility complex class I that specifically kills activated lymphocytes and blocks liver damage in the Concanavalin A hepatitis model. J. Exp. Med. 198, 497–503 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Constantinides, M. et al. Direct cell death induced by CD20 monoclonal antibodies on B cell lymphoma cells revealed by new protocols of analysis. Cancers 15, 1109 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Khoy, K., Mariotte, D., Defer, G., Petit, G., Toutirais, O. & Le Mauff, B. Natalizumab in multiple sclerosis treatment: From biological effects to immune monitoring. Front. Immunol. 11, 549842 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimizu, T. & Pommier, Y. Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: Effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and Serine proteases. Leukemia 11, 1238–1244 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Brockhaus, F. & Brüne, B. U937 apoptotic cell death by nitric oxide: Bcl-2 downregulation and caspase activation. Exp. Cell. Res. 238, 33–41 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Nyiramana, M. M. et al. Sea hare hydrolysate-induced reduction of human non-small cell lung cancer cell growth through regulation of macrophage polarization and non-apoptotic regulated cell death pathways. Cancers 12, 726 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Skov, S., Klausen, P. & Claesson, M. H. Ligation of major histocompatability complex (MHC) class I molecules on human T cells induces cell death through PI-3 kinase-induced c-Jun NH2-terminal kinase activity: a novel apoptotic pathway distinct from Fas-induced apoptosis. J. Cell. Biol. 139, 1523–1531 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curnock, A. P. & Knox, K. A. LY294002-mediated Inhibition of phosphatidylinositol 3-kinase activity triggers growth Inhibition and apoptosis in CD40-triggered Ramos-Burkitt lymphoma B cells. Cell. Immunol. 187, 77–87 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y. W. & Waldmann, H. Toward the role of cholesterol and cholesterol transfer protein in autophagosome biogenesis. Autophagy 15, 2167–2168 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, T. et al. Structural basis of RIP1 Inhibition by Necrostatins. Structure 21, 493–499 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sodeoka, M. & Dodo, K. Development of selective inhibitors of necrosis. Chem. Rec. 10, 308–314 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Bellosillo, B. et al. Complement-mediated cell death induced by rituximab in B-cell lymphoproliferative disorders is mediated in vitro by a caspase-independent mechanism involving the generation of reactive oxygen species. Blood 98, 2771–2777 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • MacLean-Fletcher, S. & Pollard, T. D. Mechanism of action of cytochalasin B on actin. Cell 20, 329–341 (1980).

    Article 
    PubMed 

    Google Scholar
     

  • Wakatsuki, T., Schwab, B., Thompson, N. C. & Elson, E. L. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell. Sci. 114, 1025–1036 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Spector, I., Shochet, N. R., Kashman, Y. & Groweiss, A. Latrunculins: Novel marine toxins that disrupt microfilament organization in cultured cells. Science 219, 493–495 (1983).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kong, D., Yamazaki, K. & Yamori, T. Discovery of phosphatidylinositol 3-kinase inhibitory compounds from the screening committee of anticancer drugs (SCADS) library. Biol. Pharm. Bull. 33, 1600–1604 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Knecht, D. A. et al. Cucurbitacin I inhibits cell motility by indirectly interfering with actin dynamics. PLOS ONE 5, e14039 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawada, M., Amemiya, M., Ishizuka, M. & Takeuchi, T. Cytostatin, an inhibitor of cell adhesion to extracellular matrix, selectively inhibits protein phosphatase 2A. Biochim. Biophys. Acta 1452, 209–217 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Ho, W. S. et al. LB-100, a novel protein phosphatase 2A (PP2A) inhibitor, sensitizes malignant meningioma cells to the therapeutic effects of radiation. Cancer Lett. 415, 217–226 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Teo, E. C., Chew, Y. & Phipps, C. A review of monoclonal antibody therapies in lymphoma. Crit. Rev. Oncol. Hematol. 97, 72–84 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Majeti, R. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene 30, 1009–1019 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Naujokat, C. Monoclonal antibodies against human cancer stem cells. Immunotherapy 6, 290–308 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Young, J. D., Cohn, Z. A. & Podack, E. R. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: Structural, immunological, and functional similarities. Science 233, 184–190 (1986).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shinkai, Y., Takio, K. & Okumura, K. Homology of Perforin to the ninth component of complement (C9). Nature 334, 525–527 (1988).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Alduaij, W. et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood 117, 4519–4529 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Vince, J. E. & Silke, J. The intersection of cell death and inflammasome activation. Cell. Mol. Life Sci. 73, 2349–2367 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Declercq, W., Vanden Berghe, T. & Vandenabeele, P. RIP kinases at the crossroads of cell death and survival. Cell 138, 229–232 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Festjens, N., Vanden Berghe, T., Cornelis, S. & Vandenabeele, P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell. Death Differ. 14, 400–410 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Duprez, L. et al. Intermediate domain of receptor-interacting protein kinase 1 (RIPK1) determines switch between necroptosis and RIPK1 kinase-dependent apoptosis. J. Biol. Chem. 287, 14863–14872 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabrielsen, M. et al. Cucurbitacin covalent bonding to cysteine thiols: The filamentous-actin severing protein cofilin1 as an exemplary target. Cell. Commun. Signal. 11, 58 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Y. et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 31, 2097–2104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jackson, J. L. & Young, M. R. I. Protein phosphatase-2A modulates the Serine and tyrosine phosphorylation of paxillin in Lewis lung carcinoma tumor variants. Clin. Exp. Metastasis 19, 409–415 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Ronk, H., Rosenblum, J. S., Kung, T. & Zhuang, Z. Targeting PP2A for cancer therapeutic modulation. Cancer Biol. Med. 19, 1428–1439 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, K. E. et al. The protein phosphatase 2A inhibitor LB100 sensitizes ovarian carcinoma cells to cisplatin-mediated cytotoxicity. Mol. Cancer Ther. 14, 90–100 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Pharmaceuticals and Medical Devices Agency (PMDA). Review Report: GAZYVA for Intravenous Infusion 1000 mg (Obinutuzumab). Nonclinical Evaluation Section 2.4. https://www.pmda.go.jp/drugs/2018/P20180730001/450045000_23000AMX00488_F100_1.pdf (2018).

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Oda-Sakurai, R. et al. NUP62: The target of an anti-sperm auto-monoclonal antibody during testicular development. Reproduction 158, 503–516 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fukuhara, T. et al. A novel immunotoxin reveals a new role for CD321 in endothelial cells. PLOS ONE 12, e0181502 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar