Synergistic reprogramming of the tumor immune microenvironment by Senecavirus A and STING agonist

Synergistic reprogramming of the tumor immune microenvironment by Senecavirus A and STING agonist

  • Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 2016;76:6747–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garland KM, Sheehy TL, Wilson JT. Lindsay KE. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem Rev. 2022;122:5977–6039.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Yu W, Jiang H, Meng X, Tang D, Liu D. Clinical applications of STING agonists in cancer immunotherapy: current progress and future prospects. Front Immunol. 2024;15:1485546.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Peng A, Chen M, Zhan M. Nanomedicines targeting activation of STING to reshape tumor immune microenvironment and enhance immunotherapeutic efficacy. Front Oncol. 2023;12:1093240.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najem H, Lea ST, Tripathi S, Hurley L, Chen CH, William I, et al. STING agonist 8803 reprograms the immune microenvironment and increases survival in preclinical models of glioblastoma. J Clin Invest. 2024;134:e175033.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Zhang W, Niu M, Wu Y, Deng X, Zhou J. STING agonist inflames the cervical cancer immune microenvironment and overcomes anti-PD-1 therapy resistance. Front Immunol. 2024;15:1342647.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau L, Gray EE, Brunette RL, Stetson DB. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science. 2015;350:568–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu JJ, Li W, Shao Y, Avey D, Fu B, Gillen J, et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe. 2015;18:333–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou M, Huang D, Zhou Z, Shi X, Wu M, Rui Y, et al. DNA virus oncoprotein HPV18 E7 selectively antagonizes cGAS-STING-triggered innate immune activation. J Med Virol. 2023;95:e28310.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burke MJ. Oncolytic Seneca Valley virus: past perspectives and future directions. Oncolytic Virother. 2016;5:81–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Li W, Sun Y, Ma J. Oncolytic senecavirus A in tumor immunotherapy: mechanisms, progress, and future directions. Virology. 2025;603:110338.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy PS, Burroughs KD, Hales LM, Ganly I, Jones BH, Idamakanti N, et al. Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J Natl Cancer Inst. 2007;99:1623–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Wang X, Chen Y, Zhao Z, Liu S, Zhou J. Senecavirus A-induced glycolysis facilitates virus replication by promoting lactate production that attenuates the interaction between MAVS and RIG-I. PLoS Pathog. 2023;19:e1011371.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue J, Liu Y, Zhang Q, Chen H, Li L, Gao P, et al. Seneca Valley virus 3Cpro antagonizes host innate immune responses. Front Immunol. 2020;11:567853.


    Google Scholar
     

  • Wen W, Li X, Wang H, Zhao Q, Yin M, Liu W, et al. Seneca Valley virus 3C protease induces pyroptosis by directly cleaving porcine gasdermin D. J Immunol. 2021;207:189–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudin CM, Poirier JT, Senzer NN, Stephenson J Jr, Loesch D, et al. Phase I clinical study of Seneca Valley virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res. 2011;17:888–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schenk EL, Mandrekar SJ, Dy GK, Aubry MC, Tan AD, Dakhil SR, et al. A randomized double-blind phase II study of the Seneca Valley virus (NTX-010) versus placebo for patients with extensive-stage SCLC who were stable or responding after at least four cycles of platinum-based chemotherapy. J Thorac Oncol. 2020;15:110–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poirier JT, Dobromilskaya I, Moriarty WF, Peacock CD, Hann CL, Rudin CM. Selective tropism of Seneca Valley virus for variant subtype small-cell lung cancer. J Natl Cancer Inst. 2013;105:1059–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant JD, Lee JS, De Almeida A, Jacques J, Chang CH, Fassler W, et al. Seneca Valley virus replicons are packaged in trans and have the capacity to overcome the limitations of viral transgene expression. Mol Ther Oncolytics. 2023;28:321–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tur-Planells V, García-Sastre A, Cuadrado-Castano S, Nistal-Villan E. Engineering non-human RNA viruses for cancer therapy. Vaccines. 2023;11:1617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantelidou C, Sonzogni O, De Oliveira Taveira T, Mezzadra R, Seo H, Gaines T, et al. STING agonism enhances anti-tumor immune responses and therapeutic efficacy of PARP inhibition in BRCA-associated breast cancer. NPJ Breast Cancer. 2022;8:102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trottier MD Jr, Palian BM, Reiss CS. VSV replication in neurons is inhibited by type I IFN at multiple stages of infection. Virology. 2005;333:215–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danastas K, Miranda-Saksena M, Cunningham AL. Herpes simplex virus type 1 interactions with the interferon system. Int J Mol Sci. 2020;21:5150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6:402.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrat FJ, Crow MK, Ivashkiv LB. Interferon target-gene expression and epigenomic signatures in health and disease. Nat Immunol. 2019;20:1574–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol. 2019;4:914–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol. 2006;6:644–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Zhong W, Xie Z, Li B, Li H, Gao K, et al. Suppressor of cytokine signaling 1 (SOCS1) inhibits antiviral responses to facilitate Senecavirus A infection by regulating the NF-κB signaling pathway. Virus Res. 2022;313:198748.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, et al. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther. 2022;7:394.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu PY, Fan XM, Zhang YN, Huang QY, Dong XQ, Chen Y. The limiting factors of oncolytic virus immunotherapy and the approaches to overcome them. Appl Microbiol Biotechnol. 2020;104:8231–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther. 2023;8:156.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czapla J, Drzyzga A, Matuszczak S, Cichoń T, Rusin M, Jarosz-Biej M, et al. Antitumor effect of anti-vascular therapy with STING agonist depends on the tumor microenvironment context. Front Oncol. 2023;13:1249524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022;29:10–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther. 2021;12:81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020;30:507–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heintzman DR, Fisher EL, Rathmell JC. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol Immunol. 2022;19:316–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heras-Murillo I, Muntasell A, Aguiló N, Romero P, Coukos G, Galluzzi L, et al. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol. 2024;21:257–77.

    Article 
    PubMed 

    Google Scholar
     

  • Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19:120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philip M, Schietinger A. CD8⁺ T cell differentiation and dysfunction in cancer. Nat Rev Immunol. 2022;22:209–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang I, Tihan T, Han SJ, Chang SM, Parsa AT, Berger MS. CD8⁺ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci. 2010;17:1381–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8⁺ T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124:359–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N. CD4 and CD8⁺ T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci. 2018;75:689–713.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schad SE, Chow A, Mangarin L, Pan H, Zhang J, Ceglia N, et al. Tumor-induced double positive T cells display distinct lineage commitment mechanisms and functions. J Exp Med. 2022;219:e20212169.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar