Harnessing mucosal immunity for protective vaccines

Harnessing mucosal immunity for protective vaccines

  • Thompson, M. G. et al. Effectiveness of Covid-19 vaccines in ambulatory and inpatient care settings. N. Engl. J. Med. 385, 1355–1371 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammed, I. et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review. Hum. Vaccines Immunother. 18, 2027160 (2022).

    Article 

    Google Scholar
     

  • Bergwerk, M. et al. Covid-19 breakthrough infections in vaccinated health care workers. N. Engl. J. Med. 385, 1474–1484 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singanayagam, A. et al. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. Lancet Infect. Dis. 22, 183–195 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ökten, A. B., Craft, J. E. & Wilen, C. B. Mechanisms of norovirus immunity: implications for vaccine design. Annu. Rev. Pathol. Mech. Dis. 21, 295–315 (2025).

    Article 

    Google Scholar
     

  • Belshe, R. B. et al. Efficacy results of a trial of a herpes simplex vaccine. N. Engl. J. Med. 366, 34–43 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, K., Magri, G., Grasset, E. K. & Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 20, 427–441 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holt, P. G., Strickland, D. H., Wikstrom, M. E. & Jahnsen, F. L. Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol. 8, 142–152 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Mettelman, R. C., Allen, E. K. & Thomas, P. G. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 55, 749–780 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakahashi-Ouchida, R., Fujihashi, K., Kurashima, Y., Yuki, Y. & Kiyono, H. Nasal vaccines: solutions for respiratory infectious diseases. Trends Mol. Med. 29, 124–140 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ramirez, S. I. et al. Immunological memory diversity in the human upper airway. Nature 632, 630–636 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Turbinate-homing IgA-secreting cells originate in the nasal lymphoid tissues. Nature 632, 637–646 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Mora, J. R. & Andrian, U. H. von. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wellford, S. A. et al. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 55, 2118–2134.e6 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazer, S. W. et al. Primary nasal influenza infection rewires tissue-scale memory response dynamics. Immunity 57, 1955–1974.e8 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyamoto, S. et al. Infectious virus shedding duration reflects secretory IgA antibody response latency after SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 120, e2314808120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcotte, H. et al. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc. Natl Acad. Sci. USA 121, e2315354120 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Havervall, S. et al. Anti-spike mucosal IgA protection against SARS-CoV-2 Omicron infection. N. Engl. J. Med. 387, 1333–1336 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagne, M. et al. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat. Immunol. 25, 1913–1927 (2024). The study highlights the importance of mucosal boosting for inducing strong IgA responses in the upper respiratory tract, which are crucial for durable protection against SARS-CoV-2 infection.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai, A. et al. Intranasal immunization with an RBD-hemagglutinin fusion protein harnesses preexisting immunity to enhance antigen-specific responses. J. Clin. Invest. 133, e166827 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stacey, H. D. et al. Local B-cell immunity and durable memory following live-attenuated influenza intranasal vaccination of humans. Preprint in bioRxiv https://doi.org/10.1101/2025.07.14.664794 (2025).

  • Lasrado, N. et al. SARS-CoV-2 XBB.1.5 mRNA booster vaccination elicits limited mucosal immunity. Sci. Transl. Med. 16, eadp8920 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Declercq, J. et al. Repeated COVID-19 mRNA-based vaccination contributes to SARS-CoV-2 neutralizing antibody responses in the mucosa. Sci. Transl. Med. 16, eadn2364 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Pizzolla, A. et al. Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2, eaam6970 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Roukens, A. H. E. et al. Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nat. Immunol. 23, 23–32 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ssemaganda, A. et al. Expansion of cytotoxic tissue-resident CD8+ T cells and CCR6+CD161+ CD4+ T cells in the nasal mucosa following mRNA COVID-19 vaccination. Nat. Commun. 13, 3357 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitsett, J. A. & Alenghat, T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 16, 27–35 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwasaki, A., Foxman, E. F. & Molony, R. D. Early local immune defences in the respiratory tract. Nat. Rev. Immunol. 17, 7–20 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Braciale, T. J., Sun, J. & Kim, T. S. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 12, 295–305 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Israelow, B. et al. Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Sci. Immunol. 6, eabl4509 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fumagalli, V. et al. Antibody-independent protection against heterologous SARS-CoV-2 challenge conferred by prior infection or vaccination. Nat. Immunol. 25, 633–643 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagstaffe, H. R. et al. Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults. Sci. Immunol. 9, eadj9285 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, A. et al. Robust mucosal SARS-CoV-2-specific T cells effectively combat COVID-19 and establish polyfunctional resident memory in patient lungs. Nat. Immunol. 26, 459–472 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • MacLean, A. J. et al. Regulation of pulmonary plasma cell responses during secondary infection with influenza virus. J. Exp. Med. 221, e20232014 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacLean, A. J. et al. Secondary influenza challenge triggers resident memory B cell migration and rapid relocation to boost antibody secretion at infected sites. Immunity 55, 718–733.e8 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son, Y. M. et al. Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses. Sci. Immunol. 6, eabb6852 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arroyo-Díaz, N. M. et al. Interferon-γ production by Tfh cells is required for CXCR3+ pre-memory B cell differentiation and subsequent lung-resident memory B cell responses. Immunity 56, 2358–2372.e5 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X., Yin, Y., Saha, G., Francis, I. & Saha, S. C. A comprehensive numerical study on the transport and deposition of nasal sprayed pharmaceutical aerosols in a nasal-to-lung respiratory tract model. Part. Part. Syst. Charact. 42, 2400004 (2025).

    Article 

    Google Scholar
     

  • Chavda, V. P., Vora, L. K. & Apostolopoulos, V. Inhalable vaccines: can they help control pandemics? Vaccines 10, 1309 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agace, W. W. & McCoy, K. D. Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity 46, 532–548 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014). This review provides a comprehensive analysis of the anatomical, functional and immunological features along the length of the gastrointestinal tract.

    Article 
    PubMed 

    Google Scholar
     

  • Fukata, M. & Arditi, M. The role of pattern recognition receptors in intestinal inflammation. Mucosal Immunol. 6, 451–463 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spencer, J. & Bemark, M. Human intestinal B cells in inflammatory diseases. Nat. Rev. Gastroenterol. Hepatol. 20, 254–265 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kulkarni, D. H. & Newberry, R. D. Antigen uptake in the gut: an underappreciated piece to the puzzle? Annu. Rev. Immunol. 43, 571–588 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esterházy, D. et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569, 126–130 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lane, J. I. et al. Intestinal lymphatic vasculature is functionally adapted to different drainage regions and is altered by helminth infection. J. Exp. Med. 222, e20241181 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canesso, M. C. C. et al. Identification of antigen-presenting cell–T cell interactions driving immune responses to food. Science 387, eado5088 (2024).

    Article 

    Google Scholar
     

  • Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 88–93 (2003). This work shows that DCs from gut-associated inductive sites, but not the spleen or non-draining lymph nodes, induce expression of the gut-homing marker α4β7 integrin on naive T cells.

    Article 
    PubMed 

    Google Scholar
     

  • Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Eksteen, B. et al. Gut homing receptors on CD8 T cells are retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterology 137, 320–329 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004). Building on Mora et al. (2003), this work identifies that retinoic acid metabolism by dendritic cells from gut-associated inductive sites is responsible for the imprinting of gut-homing properties on naive T cells.

    Article 
    PubMed 

    Google Scholar
     

  • Iwata, M. & Yokota, A. Retinoic acid production by intestinal dendritic cells. Vitam. Horm. 86, 127–152 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Müller, S., Bühler-Jungo, M. & Mueller, C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. J. Immunol. 164, 1986–1994 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Parsa, R. et al. Newly recruited intraepithelial Ly6A+ CCR9+ CD4+ T cells protect against enteric viral infection. Immunity 55, 1234–1249.e6 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acker, A. V. et al. A murine intestinal intraepithelial NKp46-negative innate lymphoid cell population characterized by group 1 properties. Cell Rep. 19, 1431–1443 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • FitzPatrick, M. E. B. et al. Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets. Cell Rep. 34, 108661 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu, Y., Zhou, Y. & Shen, J. An overview of tissue-resident memory T cells in the intestine: from physiological functions to pathological mechanisms. Front. Immunol. 13, 912393 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fung, H. Y., Teryek, M., Lemenze, A. D. & Bergsbaken, T. CD103 fate mapping reveals that intestinal CD103 tissue-resident memory T cells are the primary responders to secondary infection. Sci. Immunol. 7, eabl9925 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoesslin, M. V. et al. Secondary infections rejuvenate the intestinal CD103 tissue-resident memory T cell pool. Sci. Immunol. 7, eabp9553 (2022).

    Article 

    Google Scholar
     

  • Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity 40, 747–757 (2014). This work demonstrates the requirement of local (that is, oral) infection to drive the development of durable resident memory populations in the gut, as distal (that is, nasal) infection fails to generate comparable local responses.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17, 414–421 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obers, A. et al. Retinoic acid and TGF-β orchestrate organ-specific programs of tissue residency. Immunity 57, 2615–2633.e10 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Qiu, Z. et al. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. J. Exp. Med. 220, e20210923 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergsbaken, T., Bevan, M. J. & Fink, P. J. Local inflammatory cues regulate differentiation and persistence of CD8+ tissue-resident memory T cells. Cell Rep. 19, 114–124 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reina-Campos, M. et al. Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted. Nature 639, 483–492 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantis, N. J., Rol, N. & Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4, 603–611 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Kawamoto, S. et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Nakajima, A. et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215, 2019–2034 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cazac, B. B. & Roes, J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siniscalco, E. R., Williams, A. & Eisenbarth, S. C. All roads lead to IgA: mapping the many pathways of IgA induction in the gut. Immunol. Rev. 326, 66–82 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haniuda, K. et al. Mucosal viral infection elicits long-lived IgA responses via type 1 follicular helper T cells. Cell 24, 6774–6790.e21 (2025).

    Article 

    Google Scholar
     

  • Lisicka, W. et al. Immunoglobulin A controls intestinal virus colonization to preserve immune homeostasis. Cell Host Microbe 33, 498–511.e10 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci. Immunol. 5, eaay2754 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawamoto, S. et al. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siniscalco, E. R. et al. Sequential class switching generates antigen-specific gut IgA from IgG1 B cells. Immunity 58, 1–19 (2025).

    Article 

    Google Scholar
     

  • Zheng, W. et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577, 543–548 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shenoy, M. K. et al. Breast milk IgG engages the mouse neonatal immune system to instruct responses to gut antigens. Science 389, eado5294 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean, J. W. et al. The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8+ T cell differentiation and function. Cell Rep. 42, 111963 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, W. et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10, 946–956 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, M., Qie, Y., Park, J. & Kim, C. H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20, 202–214 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wira, C. R., Rodriguez-Garcia, M. & Patel, M. V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 15, 217–230 (2015). This review provides comprehensive details on how oestradiol and progesterone cyclically remodel epithelial barriers, PRR expression and cytokines across the FRT, underpinning timing, route and adjuvant choices for FRT-targeted vaccines.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herfs, M. et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl. Acad. Sci. USA 109, 10516–10521 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grande, G. et al. Proteomic characterization of the qualitative and quantitative differences in cervical mucus composition during the menstrual cycle. Mol. Biosyst. 11, 1717–1725 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Critchfield, A. S. et al. Cervical mucus properties stratify risk for preterm birth. PLoS ONE 8, e69528 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Hanlon, D. E., Moench, T. R. & Cone, R. A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 8, e80074 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chee, W. J. Y., Chew, S. Y. & Than, L. T. L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Fact. 19, 203 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glick, V. J. et al. Vaginal lactobacilli produce anti-inflammatory β-carboline compounds. Cell Host Microbe 32, 1897–1909.e7 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosmann, C. et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity 46, 29–37 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anahtar, M. N. et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 42, 965–976 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wira, C. R. et al. Sex hormone regulation of innate immunity in the female reproductive tract: the role of epithelial cells in balancing reproductive potential with protection against sexually transmitted pathogens. Am. J. Reprod. Immunol. 63, 544–565 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. Z., Way, S. S. & Chen, K. Immunology of the uterine and vaginal mucosae. Trends Immunol. 39, 302–314 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Pioli, P. A. et al. Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect. Immun. 72, 5799–5806 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwasaki, A. Antiviral immune responses in the genital tract: clues for vaccines. Nat. Rev. Immunol. 10, 699–711 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaefer, T. M., Wright, J. A., Pioli, P. A. & Wira, C. R. IL-1β-mediated proinflammatory responses are inhibited by estradiol via down-regulation of IL-1 receptor type I in uterine epithelial cells. J. Immunol. 175, 6509–6516 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Hall, O. J. & Klein, S. L. Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites. Mucosal Immunol. 10, 1097–1107 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Iijima, N., Thompson, J. M. & Iwasaki, A. Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol. 1, 451–459 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, J. & Salamonsen, L. A. Inflammation, leukocytes and menstruation. Rev. Endocr. Metab. Disord. 13, 277–288 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Iijima, N. & Iwasaki, A. Tissue instruction for migration and retention of TRM cells. Trends Immunol. 36, 556–564 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roychoudhury, P. et al. Tissue-resident T cell derived cytokines eliminate herpes simplex virus-2 infected cells. J. Clin. Investig. 130, 2903–2919 (2020). This work shows that tissue-resident T cell-derived cytokines rapidly clear HSV-2-infected cells in human genital lesions, providing mechanistic evidence that durable protection in the FRT requires establishment of local TRM cells by vaccination.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shacklett, B. L. Mucosal immunity in HIV/SIV infection: T cells, B cells and beyond. Curr. Immunol. Rev. 15, 63–75 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koelle, D. M., Frank, J. M., Johnson, M. L. & Kwok, W. W. Recognition of herpes simplex virus type 2 tegument proteins by CD4 T cells infiltrating human genital herpes lesions. J. Virol. 72, 7476–7483 (1998).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mestecky, J. & Fultz, P. N. Mucosal immune system of the human genital tract. J. Infect. Dis. 179, S470–S474 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc. Natl. Acad. Sci. USA 108, 4388–4393 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson, J. M., Kaushic, C. & Wira, C. R. Polymeric immunoglobin (Ig) receptor production and IgA transcytosis in polarized primary cultures of mature rat uterine epithelial cells. Biol. Reprod. 53, 488–498 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Usala, S. J., Usala, F. O., Haciski, R., Holt, J. A. & Schumacher, G. F. IgG and IgA content of vaginal fluid during the menstrual cycle. J. Reprod. Med. 34, 292–294 (1989).

    PubMed 

    Google Scholar
     

  • Mestecky, J. & Russell, M. W. Induction of mucosal immune responses in the human genital tract. FEMS Immunol. Med. Microbiol. 27, 351–355 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Watkins, T. A., Brockhurst, J. K., Germain, G., Griffin, D. E. & Foxman, E. F. Detection of live attenuated measles virus in the respiratory tract following subcutaneous measles-mumps-rubella vaccination. J. Infect. Dis. 231, 1089–1093 (2024).

    Article 

    Google Scholar
     

  • Topol, E. J. & Iwasaki, A. Operation nasal vaccine — lightning speed to counter COVID-19. Sci. Immunol. 7, eadd9947 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Routhu, N. K. et al. A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity 54, 542–556.e9 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Americo, J. L., Cotter, C. A., Earl, P. L., Liu, R. & Moss, B. Intranasal inoculation of an MVA-based vaccine induces IgA and protects the respiratory tract of hACE2 mice from SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 119, e2202069119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nouen, C. L. et al. Intranasal pediatric parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in monkeys. Cell 185, 4811–4825.e17 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169–184.e13 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku, M. W. et al. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe 29, 236–249.e6 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Doremalen, N. van et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13, eabh0755 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ying, B. et al. Mucosal vaccine-induced cross-reactive CD8+ T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nat. Immunol. 25, 537–551 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahan, K. et al. Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques. Nature 626, 385–391 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. eBioMedicine 85, 104298 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tscherne, A. & Krammer, F. A review of currently licensed mucosal COVID-19 vaccines. Vaccine 61, 127356 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Kiyono, H. & Ernst, P. B. Nasal vaccines for respiratory infections. Nature 641, 321–330 (2025). This review provides a comprehensive overview of recent advances and challenges in the development of nasal vaccines for respiratory infections.

    Article 
    PubMed 

    Google Scholar
     

  • Carter, N. J. & Curran, M. P. Live attenuated influenza vaccine (FluMist®; FluenzTM): a review of its use in the prevention of seasonal influenza in children and adults. Drugs 71, 1591–1622 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Mutsch, M. et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med. 350, 896–903 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, D. I. et al. Mucosal unadjuvanted booster vaccines elicit local IgA responses by conversion of pre-existing immunity in mice. Nat. Immunol. 26, 908–919 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriyama, M. et al. Intranasal hemagglutinin protein boosters induce protective mucosal immunity against influenza A viruses in mice. Proc. Natl. Acad. Sci. USA 122, e2422171122 (2025). Together with Mao et al. (2022) and Kwon et al. (2025), this paper demonstrates how nasal protein boosters can harness pre-existing immunity to elicit robust mucosal recall responses, including local IgA responses, providing a safe and potent mucosal vaccine strategy to enhance mucosal protection against respiratory viruses.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talaat, K. R. et al. A live attenuated influenza A(H5N1) vaccine induces long-term immunity in the absence of a primary antibody response. J. Infect. Dis. 209, 1860–1869 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. et al. Sequential intranasal booster triggers class switching from intramuscularly primed IgG to mucosal IgA against SARS-CoV-2. J. Clin. Invest. 135, e175233 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, W. et al. Ipsilateral immunization after a prior SARS-CoV-2 mRNA vaccination elicits superior B cell responses compared to contralateral immunization. Cell Rep. 43, 113665 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhenni, R. et al. Macrophages direct location-dependent recall of B cell memory to vaccination. Cell 188, 3477–3496.e22 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Lederer, K. et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity 53, 1281–1295.e5 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596, 109–113 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cirelli, K. M. et al. Slow delivery immunization rnhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell 177, 1153–1171 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 609, 998–1004 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhagchandani, S. H. et al. Two-dose priming immunization amplifies humoral immunity by synchronizing vaccine delivery with the germinal center response. Sci. Immunol. 9, eadl3755 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Painter, M. M. et al. Prior vaccination promotes early activation of memory T cells and enhances immune responses during SARS-CoV-2 breakthrough infection. Nat. Immunol. 24, 1711–1724 (2023). This work shows that prior vaccination accelerates memory T cell activation upon SARS-CoV-2 breakthrough infection, thereby enhancing the quality and magnitude of recall immune responses.

    Article 
    PubMed 

    Google Scholar
     

  • Bates, T. A. et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci. Immunol. 7, eabn8014 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, M. et al. Effect of hybrid immunity and bivalent booster vaccination on omicron sublineage neutralisation. Lancet Infect. Dis. 23, 25–28 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Herremans, T. M. P. T., Reimerink, J. H. J., Buisman, A. M., Kimman, T. G. & Koopmans, M. P. G. Induction of mucosal immunity by inactivated poliovirus vaccine is dependent on previous mucosal contact with live virus. J. Immunol. 162, 5011–5018 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • McConnell, E. L., Basit, A. W. & Murdan, S. Colonic antigen administration induces significantly higher humoral levels of colonic and vaginal IgA, and serum IgG compared to oral administration. Vaccine 26, 639–646 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Romagnoli, P. A. et al. Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection. Mucosal Immunol. 10, 520–530 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, L. & Becattini, S. Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine. Mucosal Immunol. 17, 810–824 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Lavelle, E. C. & Ward, R. W. Mucosal vaccines — fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Booth, J. S. et al. Attenuated oral typhoid vaccine Ty21a elicits lamina propria and intra-epithelial lymphocyte tissue-resident effector memory CD8 T responses in the human terminal ileum. Front. Immunol. 10, 424 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Booth, J. S., Goldberg, E., Barnes, R. S., Greenwald, B. D. & Sztein, M. B. Oral typhoid vaccine Ty21a elicits antigen-specific resident memory CD4+ T cells in the human terminal ileum lamina propria and epithelial compartments. J. Transl. Med. 18, 102 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco, M. A., Angel, J. & Greenberg, H. B. Immunity and correlates of protection for rotavirus vaccines. Vaccine 24, 2718–2731 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wright, P. F. et al. Vaccine-induced mucosal immunity to poliovirus: analysis of cohorts from an open-label, randomised controlled trial in Latin American infants. Lancet Infect. Dis. 16, 1377–1384 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marine, W. M., Chin, T. D. Y. & Gravelle, C. R. Limitation of fecal and pharyngeal poliovirus excretion in Salk-vaccinated children. A family study during a type 1 poliomyelitis epidemic. Am. J. Epidemiol. 76, 173–195 (1962).

    Article 

    Google Scholar
     

  • Hird, T. R. & Grassly, N. C. Systematic review of mucosal immunity induced by oral and inactivated poliovirus vaccines against virus shedding following oral poliovirus challenge. PLoS Pathog. 8, e1002599 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, H. et al. Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol. J. 14, 2190–2200 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, M. P. & Hall, A. J. Norovirus illnesses in children and adolescents. Infect. Dis. Clin. N. Am. 32, 103–118 (2018).

    Article 

    Google Scholar
     

  • Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Ramani, S. et al. Mucosal and cellular immune responses to Norwalk virus. J. Infect. Dis. 212, 397–405 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefan, K. L., Kim, M. V., Iwasaki, A. & Kasper, D. L. Commensal microbiota modulation of natural resistance to virus infection. Cell 183, 1312–1324.e10 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, F. J. et al. Bifidobacteria support optimal infant vaccine responses. Nature 641, 456–464 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y. et al. Antibiotic-induced gut microbiome perturbation alters the immune responses to the rabies vaccine. Cell Host Microbe 33, 705–718.e5 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, J. Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleem, A. F. et al. Immunogenicity of poliovirus vaccines in chronically malnourished infants: a randomized controlled trial in Pakistan. Vaccine 33, 2757–2763 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neidich, S. D. et al. Increased risk of influenza among vaccinated adults who are obese. Int. J. Obes. 41, 1324–1330 (2017).

    Article 

    Google Scholar
     

  • Honce, R. et al. Diet switch pre-vaccination improves immune response and metabolic status in formerly obese mice. Nat. Microbiol. 9, 1593–1606 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Becattini, S. et al. Enhancing mucosal immunity by transient microbiota depletion. Nat. Commun. 11, 4475 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luccia, B. D. et al. Combined prebiotic and microbial intervention improves oral cholera vaccination responses in a mouse model of childhood undernutrition. Cell Host Microbe 27, 899–908.e5 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naik, S. et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gribonika, I. et al. Skin autonomous antibody production regulates host–microbiota interactions. Nature 638, 1043–1053 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Bousbaine, D. et al. Discovery and engineering of the antibody response to a prominent skin commensal. Nature 638, 1054–1064 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, E. Y. et al. The protozoan commensal Tritrichomonas musculis is a natural adjuvant for mucosal IgA. J. Exp. Med. 221, e20221727 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179–1184 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019). This work describes the potential of immunogenic commensals to modulate both local and systemic immunity, as transfer of an immunogenic consortia into germ-free mice elicited increased frequencies of intestinal IELs and circulating CD8+ T cells.

    Article 
    PubMed 

    Google Scholar
     

  • Rupp, R. E., Stanberry, L. R. & Rosenthal, S. L. Vaccines for sexually transmitted infections. Pediatr. Ann. 34, 818–824 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Roden, R. B. S. & Stern, P. L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer 18, 240–254 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiller, J. T. & Lowy, D. R. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 10, 681–692 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012). This work introduces the prime and pull vaccine strategy, recruiting parenterally vaccine-primed T cells to the genital mucosa via locally administered chemokines to establish protective TRM cells.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernstein, D. I. et al. Successful application of prime and pull strategy for a therapeutic HSV vaccine. NPJ Vaccines 4, 33 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhagchandani, S. H. et al. Bioactive enhanced adjuvant chemokine oligonucleotide nanoparticles (BEACONs) for mucosal vaccination against genital herpes. Preprint in bioRxiv https://doi.org/10.1101/2025.07.31.667899 (2025).

  • VanBenschoten, H. M. & Woodrow, K. A. Vaginal delivery of vaccines. Adv. Drug Deliv. Rev. 178, 113956 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKay, P. F. et al. Intravaginal immunisation using a novel antigen-releasing ring device elicits robust vaccine antigen-specific systemic and mucosal humoral immune responses. J. Control. Release 249, 74–83 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cranage, M. P. et al. Antibody responses after intravaginal immunisation with trimeric HIV-1CN54 clade C gp140 in Carbopol gel are augmented by systemic priming or boosting with an adjuvanted formulation. Vaccine 29, 1421–1430 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wyatt, T. L., Whaley, K. J., Cone, R. A. & Saltzman, W. M. Antigen-releasing polymer rings and microspheres stimulate mucosal immunity in the vagina. J. Control. Release 50, 93–102 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Logerot, S. et al. IL-7-adjuvanted vaginal vaccine elicits strong mucosal immune responses in non-human primates. Front. Immunol. 12, 614115 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zalenskaya, I. A. et al. Use of contraceptive depot medroxyprogesterone acetate is associated with impaired cervicovaginal mucosal integrity. J. Clin. Investig. 128, 4622–4638 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medaglini, D., Rush, C. M., Sestini, P. & Pozzi, G. Commensal bacteria as vectors for mucosal vaccines against sexually transmitted diseases: vaginal colonization with recombinant streptococci induces local and systemic antibodies in mice. Vaccine 15, 1330–1337 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Bermúdez-Humarán, L. G., Kharrat, P., Chatel, J.-M. & Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 10, S4 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagenaur, L. A. et al. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol. 4, 648–657 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medaglini, D., Oggioni, M. R. & Pozzi, G. Vaginal immunization with recombinant Gram-positive bacteria. Am. J. Reprod. Immunol. 39, 199–208 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, C.-H., Simpson, D. A., Li-Yun Chang, T., Xu, Q. & Lewicki, J. A. Lactobacilli expressing biologically active polypeptides and uses thereof. US patent US7833791B2 (2003).

  • Mestecky, J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J. Clin. Immunol. 7, 265–276 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Eshaghi, B. et al. The role of engineered materials in mucosal vaccination strategies. Nat. Rev. Mater. 9, 29–45 (2024).

    Article 

    Google Scholar
     

  • Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez, J. E. V., Sharpe, L. A. & Peppas, N. A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 114, 116–131 (2017).

    Article 

    Google Scholar
     

  • Hartwell, B. L. et al. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med. 14, eabn1413 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, Z. et al. Nanoplatform based intranasal vaccines: current progress and clinical challenges. ACS Nano 18, 24650–24681 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollard, A. J. & Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83–100 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat. Commun. 15, 9471 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Advances and prospects of respiratory mucosal vaccines: mechanisms, technologies, and clinical applications. NPJ Vaccines 10, 230 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, X., Gao, Y., Shu, J., Zhang, C. & Zhao, K. Chitosan-based nanomaterial as immune adjuvant and delivery carrier for vaccines. Vaccines 10, 1906 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suberi, A. et al. Inhalable polymer nanoparticles for versatile mRNA delivery and mucosal vaccination. Preprint in bioRxiv https://doi.org/10.1101/2022.03.22.485401 (2022).

  • Ganesan, S. et al. Intranasal nanoemulsion adjuvanted S-2P vaccine demonstrates protection in hamsters and induces systemic, cell-mediated and mucosal immunity in mice. PLoS ONE 17, e0272594 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, L., Xu, W., Jiang, H., Yang, M. & Cun, D. Respiratory delivered vaccines: current status and perspectives in rational formulation design. Acta Pharm. Sin. B 14, 5132–5160 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crothers, J. W. & Norton, E. B. Recent advances in enterotoxin vaccine adjuvants. Curr. Opin. Immunol. 85, 102398 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundling, C. et al. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization. J. Gen. Virol. 89, 2954–2964 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ensign, L. M. et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci. Transl. Med. 4, 138ra79 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Hagan, D. T., Rafferty, D., Wharton, S. & Illum, L. Intravaginal immunization in sheep using a bioadhesive microsphere antigen delivery system. Vaccine 11, 660–664 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Howe, S. E. & Konjufca, V. H. Protein-coated nanoparticles are internalized by the epithelial cells of the female reproductive tract and induce systemic and mucosal immune responses. PLoS ONE 9, e114601 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCright, J. C. & Maisel, K. Engineering drug delivery systems to overcome mucosal barriers for immunotherapy and vaccination. Tissue Barriers 8, 1695476 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, L. et al. Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. JCI Insight 3, e121077 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flitter, B. A. et al. An oral norovirus vaccine tablet was safe and elicited mucosal immunity in older adults in a phase 1b clinical trial. Sci. Transl. Med. 17, eads0556 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Flitter, B. A. et al. An oral norovirus vaccine generates mucosal immunity and reduces viral shedding in a phase 2 placebo-controlled challenge study. Sci. Transl. Med. 17, eadh9906 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Oral delivery of liquid mRNA therapeutics by an engineered capsule for treatment of preclinical intestinal disease. Sci. Transl. Med. 17, eadu1493 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmgren, J. & Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 11, S45–S53 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bergquist, C., Johansson, E. L., Lagergård, T., Holmgren, J. & Rudin, A. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect. Immun. 65, 2676–2684 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudin, A., Johansson, E.-L., Bergquist, C. & Holmgren, J. Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans. Infect. Immun. 66, 3390–3396 (1998).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoft, D. F. et al. PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4+ T cell transcriptomal molecular signatures. Mucosal Immunol. 11, 486–495 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ramanan, D. et al. An immunologic mode of multigenerational transmission governs a gut Treg setpoint. Cell 181, 1276–1290.e13 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaquish, A. et al. Mammary intraepithelial lymphocytes and intestinal inputs shape T cell dynamics in lactogenesis. Nat. Immunol. 26, 1411–1422 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plotkin, S. A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 17, 1055–1065 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, S. et al. Enteric viruses replicate in salivary glands and infect through saliva. Nature 607, 345–350 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 27, 892–903 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Moutsopoulos, N. M. & Konkel, J. E. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol. 39, 276–287 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gaffen, S. L. & Moutsopoulos, N. M. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci. Immunol. 5, eaau4594 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickman, H. D. & Moutsopoulos, N. M. Viral infection and antiviral immunity in the oral cavity. Nat. Rev. Immunol. 25, 235–249 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Eriksson, K., Ahlfors, E., George-Chandy, A., Kaiserlian, D. & Czerkinsky, C. Antigen presentation in the murine oral epithelium. Immunology 88, 147–152 (1996).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alburquerque, J. B. de et al. Microbial uptake in oral mucosa-draining lymph nodes leads to rapid release of cytotoxic CD8+ T cells lacking a gut-homing phenotype. Sci. Immunol. 7, eabf1861 (2022).

    Article 

    Google Scholar
     

  • Conti, H. R. et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211, 2075–2084 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gladiator, A., Wangler, N., Trautwein-Weidner, K. & LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190, 521–525 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kirchner, F. R. & LeibundGut-Landmann, S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 14, 455–467 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Conti, H. R. et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe 20, 606–617 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolley, J. M. et al. Depleting CD103+ resident memory T cells in vivo reveals immunostimulatory functions in oral mucosa. J. Exp. Med. 220, e20221853 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingrole, R. S. J. et al. Floss-based vaccination targets the gingival sulcus for mucosal and systemic immunization. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-025-01451-3 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Kelly, S. H. et al. A sublingual nanofiber vaccine to prevent urinary tract infections. Sci. Adv. 8, eabq4120 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wira, C. R. & Fahey, J. V. A new strategy to understand how HIV infects women: identification of a window of vulnerability during the menstrual cycle. AIDS 22, 1909–1917 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brotman, R. M., Ravel, J., Bavoil, P. M., Gravitt, P. E. & Ghanem, K. G. Microbiome, sex hormones, and immune responses in the reproductive tract: challenges for vaccine development against sexually transmitted infections. Vaccine 32, 1543–1552 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Patton, D. L. et al. Epithelial cell layer thickness and immune cell populations in the normal human vagina at different stages of the menstrual cycle. Am. J. Obstet. Gynecol. 183, 967–973 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Doncel, G. F., Joseph, T. & Thurman, A. R. Role of semen in HIV-1 transmission: inhibitor or facilitator? Am. J. Reprod. Immunol. 65, 292–301 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kersh, E. N. et al. SHIV susceptibility changes during the menstrual cycle of pigtail macaques. J. Med. Primatol. 43, 310–316 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swaims-Kohlmeier, A. et al. Progesterone levels associate with a novel population of CCR5+CD38+ CD4 T cells resident in the genital mucosa with lymphoid trafficking potential. J. Immunol. 197, 368–376 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piccinni, M. P. et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J. Immunol. 155, 128–133 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Vishwanathan, S. A. et al. High susceptibility to repeated, low-dose, vaginal SHIV exposure late in the luteal phase of the menstrual cycle of pigtail macaques. J. Acquir. Immune Defic. Syndr. 57, 261–264 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kozlowski, P. A. et al. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J. Immunol. 169, 566–574 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, C. W. et al. Influenza vaccine-induced human bone marrow plasma cells decline within a year after vaccination. Science 370, 237–241 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434–2451.e17 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava, K. et al. SARS-CoV-2-infection- and vaccine-induced antibody responses are long lasting with an initial waning phase followed by a stabilization phase. Immunity 57, 587–599.e4 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muecksch, F. et al. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature 607, 128–134 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, D. C. et al. SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination. Nat. Med. 31, 235–244 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, W. et al. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature 604, 141–145 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortese, M. et al. System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans. Nat. Immunol. 26, 116–130 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. J. et al. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 56, 1596–1612.e4 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, X., Yao, J., Zhao, Y., Wang, J. & Qi, H. Heterogeneous plasma cells and long-lived subsets in response to immunization, autoantigen and microbiota. Nat. Immunol. 23, 1564–1576 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tellier, J. et al. Unraveling the diversity and functions of tissue-resident plasma cells. Nat. Immunol. 25, 330–342 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Holgado, M. P. et al. Mucosal B cell memory selection integrates tissue-specific microbial cues via the IgA BCR. Preprint at bioRxiv https://doi.org/10.1101/2025.04.30.651421 (2025).

  • Bhattacharya, D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity 55, 945–964 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiyono, H. & Fukuyama, S. NALT- versus PEYER’S-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4, 699–710 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakahashi-Ouchida, R. et al. Cationic nanogel-based nasal therapeutic HPV vaccine prevents the development of cervical cancer. Sci. Transl. Med. 17, eado8840 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Bomsel, M. et al. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity 34, 269–280 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Czerkinsky, C., Çuburu, N., Kweon, M.-N., Anjuere, F. & Holmgren, J. Sublingual vaccination. Hum. Vaccines 7, 110–114 (2011).

    Article 

    Google Scholar
     

  • Benito-Villalvilla, C. et al. MV140, a sublingual polyvalent bacterial preparation to treat recurrent urinary tract infections, licenses human dendritic cells for generating Th1, Th17, and IL-10 responses via Syk and MyD88. Mucosal Immunol. 10, 924–935 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Abraham, S. et al. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect. Dis. 19, 1091–1100 (2019).

    Article 
    PubMed 

    Google Scholar