Targeting autocrine retinoic acid signaling by ALDH1A2 inhibition enhances antitumor dendritic cell vaccine efficacy

Targeting autocrine retinoic acid signaling by ALDH1A2 inhibition enhances antitumor dendritic cell vaccine efficacy

  • Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira da Costa, M. & Reis, E. S. C. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L., Su, Y., Jiao, A., Wang, X. & Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 8, 235 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther. 8, 9 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez, C. R. & De Palma, M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Commun. 10, 5408 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najafi, S. & Mortezaee, K. Advances in dendritic cell vaccination therapy of cancer. Biomed. Pharmacother. 164, 114954 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harari, A., Graciotti, M., Bassani-Sternberg, M. & Kandalaft, L. E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug Discov. 19, 635–652 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garg, A. D. et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci. Transl. Med. 8, 328ra327 (2016).

    Article 

    Google Scholar
     

  • Miga, A. J. et al. Dendritic cell longevity and T cell persistence is controlled by CD154–CD40 interactions. Eur. J. Immunol. 31, 959–965 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazewicz, C. G., Dinavahi, S. S., Schell, T. D. & Robertson, G. P. Aldehyde dehydrogenase in regulatory T-cell development, immunity and cancer. Immunology 156, 47–55 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaman, T. S. et al. Notch balances TH17 and induced regulatory T cell functions in dendritic cells by regulating Aldh1a2 expression. J. Immunol. 199, 1989–1997 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, S. et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of TH17 cells by enhancing TGF-β-driven SMAD3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 181, 2277–2284 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La, C. et al. The RNA-binding protein tristetraprolin regulates RALDH2 expression by intestinal dendritic cells and controls local Treg homeostasis. Mucosal Immunol. 14, 80–91 (2021).

  • Shiokawa, A., Kotaki, R., Takano, T., Nakajima-Adachi, H. & Hachimura, S. Mesenteric lymph node CD11b CD103+ PD-L1High dendritic cells highly induce regulatory T cells. Immunology 152, 52–64 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takaki, H. et al. STAT6 inhibits TGF-β1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J. Biol. Chem. 283, 14955–14962 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manicassamy, S. et al. Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat. Med. 15, 401–409 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broadhurst, M. J. et al. Upregulation of retinal dehydrogenase 2 in alternatively activated macrophages during retinoid-dependent type-2 immunity to helminth infection in mice. PLoS Pathog. 8, e1002883 (2012).

  • Soroosh, P. et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 210, 775–788 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devalaraja, S. et al. Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression. Cell 180, 1098–1114 (2020).

  • Warren, E. W. & Khanderia, U. Use of retinoids in the treatment of psoriasis. Clin. Pharm. 8, 344–351 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Green, S. G. & Piette, W. W. Successful treatment of hypertrophic lupus erythematosus with isotretinoin. J. Am. Acad. Dermatol. 17, 364–368 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esposito, M., Amory, J. K. & Kang, Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J. Exp. Med. 221, e20240519 (2024).

  • Helft, J. et al. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42, 1197–1211 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, D. & Sprent, J. GM-CSF culture revisited: preparation of bulk populations of highly pure dendritic cells from mouse bone marrow. J. Immunol. 201, 3129–3139 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Czuba, L. C., Zhong, G., Yabut, K. C. & Isoherranen, N. Analysis of vitamin A and retinoids in biological matrices. Methods Enzymol. 637, 309–340 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vassalli, G. Aldehyde dehydrogenases: not just markers, but functional regulators of stem cells. Stem Cells Int. 2019, 3904645 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhinn, M. & Dolle, P. Retinoic acid signalling during development. Development 139, 843–858 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esposito, M. et al. Development of retinoid nuclear receptor pathway antagonists through targeting aldehyde dehydrogenase 1A3. iScience 28, 113675 (2025).

  • Zhu, B. et al. IL-4 and retinoic acid synergistically induce regulatory dendritic cells expressing Aldh1a2. J. Immunol. 191, 3139–3151 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thangavelu, G. et al. Dendritic cell expression of retinal aldehyde dehydrogenase-2 controls graft-versus-host disease lethality. J. Immunol. 202, 2795–2805 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shortall, K., Djeghader, A., Magner, E. & Soulimane, T. Insights into aldehyde dehydrogenase enzymes: a structural perspective. Front. Mol. Biosci. 8, 659550 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lassen, N. et al. Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1−/−/Aldh1a1−/− knock-out mice. J. Biol. Chem. 282, 25668–25676 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohoka, Y., Yokota-Nakatsuma, A., Maeda, N., Takeuchi, H. & Iwata, M. Retinoic acid and GM-CSF coordinately induce retinal dehydrogenase 2 (RALDH2) expression through cooperation between the RAR/RXR complex and Sp1 in dendritic cells. PLoS ONE 9, e96512 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest 116, 916–928 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 25, 656–666 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirkling, M. E. et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep. 23, 3658–3672 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, Y., Sunkara, V., Lee, Y. & Cho, Y. K. Exhausted mature dendritic cells exhibit a slower and less persistent random motility but retain chemotaxis against CCL19. Lab Chip 22, 377–386 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kajino, K., Nakamura, I., Bamba, H., Sawai, T. & Ogasawara, K. Involvement of IL-10 in exhaustion of myeloid dendritic cells and rescue by CD40 stimulation. Immunology 120, 28–37 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 1, 311–316 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawless, S. J. et al. Glucose represses dendritic cell-induced T cell responses. Nat. Commun. 8, 15620 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatfield, P. et al. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J. Immunother. 31, 620–632 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

  • Maria, C. C. C. et al. Identification of antigen-presenting cell–T cell interactions driving immune responses to food. Science 387, eado5088 (2025).

    Article 

    Google Scholar
     

  • Hong, Y. et al. β-Catenin promotes regulatory T-cell responses in tumors by inducing vitamin A metabolism in dendritic cells. Cancer Res. 75, 656–665 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truckenbrod, E. N. et al. CD8+ T cell self-tolerance permits responsiveness but limits tissue damage. eLife 10, e65615 (2021).

  • Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021).

  • De Leo, A. et al. Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity 57, 1105–1123 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moller, S. H., Wang, L. & Ho, P. C. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell Mol. Immunol. 19, 370–383 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Klein Geltink, R. I. et al. Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nat. Metab. 2, 703–716 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adamik, J. et al. Immuno-metabolic dendritic cell vaccine signatures associate with overall survival in vaccinated melanoma patients. Nat. Commun. 14, 7211 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamik, J. et al. Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells. Nat. Commun. 13, 5184 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amiel, E. et al. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J. Immunol. 189, 2151–2158 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, N. E. et al. Identification of potent and selective retinoic acid receptor γ (RARγ) antagonists for the treatment of osteoarthritis pain using structure based drug design. Bioorg. Med. Chem. Lett. 26, 3274–3277 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulze, G. E. et al. BMS-189453, a novel retinoid receptor antagonist, is a potent testicular toxin. Toxicol. Sci. 59, 297–308 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasiliou, V., Bairoch, A., Tipton, K. F. & Nebert, D. W. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 9, 421–434 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • McLean, M. E. et al. The expanding role of cancer stem cell marker ALDH1A3 in cancer and beyond. Cancers 15, 492 (2023).

  • Zhang, C. et al. Oncorequisite role of an aldehyde dehydrogenase in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 106, 1545–1558 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vellozo, N. S. et al. All-trans retinoic acid promotes an M1- to M2-phenotype shift and inhibits macrophage-mediated immunity to Leishmania major. Front. Immunol. 8, 1560 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Harder, E. et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput 12, 281–296 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE Database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yurekten, O. et al. MetaboLights: open data repository for metabolomics. Nucleic Acids Res. 52, D640–D646 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar